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MRCET VISION R-20

¢ To become a model institution in the fields of Engineering, Technology and

Management.

e To have a perfect synchronization of the ideologies of MRCET with challenging

demands of International Pioneering Organizations.

MRCET MISSION

To establish a pedestal for the integral innovation, team spirit, originality and competence
in the students, expose them to face the global challenges and become pioneers of Indian vision

of modern society.

MRCET QUALITY POLICY.

e To pursue continual improvement of teaching learning process of Undergraduate and

Post Graduate programs in Engineering & Management vigorously.

e To provide state of art infrastructure and expertise to impart the quality education.
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PROGRAM OUTCOMES
(PO’s)
Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles. of
mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions : Design solutions for complex engineering problemsand
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and
environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis
of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues. and the consequent responsibilities
relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development.

o]

. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice:
9. Individual and team work: Function‘effectively as an individual, and as a member or leader
in diverse teams, and.in multidisciplinary settings.

10. Communication: .Communicate effectively on complex engineering activities with the
engineering community--and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive clearinstructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to onés own work, as a member
and leader in a team, to manage projects and in multi disciplinary environments.

12. Life- long learning: Recognize the need for, and have the preparation and ability to engage
in'independent and life-long learning in the broadest context of technological change.
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DEPARTMENT OF AERONAUTICAL ENGINEERING

VISION

Department of Aeronautical Engineering aims to be indispensable source in Aeronautical
Engineering which has a zeal to provide the value driven platform for the students to acquire
knowledge and empower themselves to shoulder higher responsibility in buildinga strong
nation.

MISSION

The primary mission of the department is to promote engineering education and. research. To
strive consistently to provide quality education, keeping in pace with time ‘and technology.
Department passions to integrate the intellectual, spiritual, ethical and social development of the
students for shaping them into dynamic engineers.

QUALITY POLICY STATEMENT

Impart up-to-date knowledge to the students in Aeronautical area to make them quality engineers.
Make the students experience the applications on'quality equipment and tools. Provide systems,
resources and training opportunities to achieve continuous improvement. Maintain global
standards in education, training and services.
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PROGRAM EDUCATIONAL OBJECTIVES - Aeronautical Engineering

1. PEO1 (PROFESSIONALISM & CITIZENSHIP): To create and sustain a community of learning
in which students acquire knowledge and learn to apply it professionally with due
consideration for ethical, ecological and economic issues.

2. PEO2 (TECHNICAL ACCOMPLISHMENTS): To provide knowledge based services to satisfy the
needs of society and the industry by providing hands on experience in various technologies in
core field.

3. PEO3 (INVENTION, INNOVATION AND CREATIVITY): To make the students to design,
experiment, analyze, and interpret in the core field with the help of other muilti disciplinary
concepts wherever applicable.

4. PEOA4 (PROFESSIONAL DEVELOPMENT): To educate the students to disseminate
research findings with good soft skills and become a successful entrepreneur.

5. PEO5 (HUMAN RESOURCE DEVELOPMENT): To graduate the students in building
national capabilities in technology, education and research

PROGRAM SPECIFIC OUTCOMES - Aeronautical
Engineering

1. To mould students to become a professional with all necessary skills, personality and
sound knowledge in basic and adyvance technological areas.

2. To promote understanding of concepts and develop ability in design manufacture and
maintenance of aircraft, aerospace vehicles and associated equipment and develop
application capability of the concepts sciences to engineering design and processes.

3. Understanding the current scenario in the field of aeronautics and acquire ability to apply
knowledge of engineering, science and mathematics to design and conduct experimentsin the
field of Aeronautical Engineering.

4. To develop leadership skills in ourstudents necessary to shape the social, intellectual,
business and technical worlds.
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(R18A2116) COMPUTATIONAL AERODYNAMICS

Objectives:
The course should enable the students to:
e Application of CFD to various engineering problems.

e Understand the physics of mathematical equations governing aerodynamicflows.
e Numerical methods to solve fluid flowproblems

UNIT-1- INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

CFD and its importance, Application of CFD to various Engineering problems. Models of fluid flow- Finite
Control Volume, Infinitesimal Fluid Element. substantial derivatives, divergence of Velocity.

UNIT-11 - GOVERNING EQUATIONS OF FLUID DYNAMICS

Continuity equation, Momentum equation, Energy equation, physical boundary conditions. Form of Governing
equation suited for CFD - Conservation form - shock fitting and shock capturing. Impact of partial differential
equations on CFD. Classification of Quasi-Linear Partial differential equation, The Eigen value method, General
behavior of different classes of Partial differential equation — elliptic, parabolic and hyperbolic with examples.

UNIT-IV-DISCRETIZATION TECHNIQUES

Introduction, Finite differences and formulas for first and second derivatives, difference equations, Explicit and
implicit approaches. Basis of finite volume method- conditions on the finite volume selections- approaches -
Cell-centered and cell-vertex. Definition of finite volume discretization general formulation ofa numerical
scheme.

UNIT-1V - GRID GENERATION

Need for grid generation. Structured grids- Cartesian grids, body fitted structured grids, Multi-block grids -
overset grids with applications. Unstructured grids- triangular/ tetrahedral cells, hybrid grids,
quadrilateral/hexahedra cells. Grid Generation techniques - Delaunay triangulation, Advance font method. Grid
quality parameters.

UNIT-V - CFD TECHNIQUES

Lax-Wendroff technique, MacCormack’s technique, Relaxation technique, Alternating-Direction-Implicit
(ADI) Technique. Pressure correction technique, Numerical procedure- SIMPLE algorithm, Boundary
conditions forthe pressure correctionmethod.

TEXT BOOKS

1. John .D. Anderson “Computational Fluid Dynamics”, McGraw Hill

2. Charles Hirsch “Numerical computation of internal and external flows” Second Edition Butterworth-
Heinemannis animprint of Elsevier

REFERENCES

1. Hoffmann, K.A: Computational Fluid Dynamics for Engineers, Engineering Education System, Austin, Tex.,
1989

2. ) Blazek “Computational Fluid Dynamics: Principlesand Applications” Elsevier.

3. Introduction to Computational FluidDynamics, Chow CY, John Wiley, 1979
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Outcomes:
The student should be able to

e Solve differentialequationsgoverning fluid flow problems.

e The student will demonstrate an ability to recognize the type of fluid flow that is occurring in a
particular physical system and to use the appropriate model equations to investigatethe flow.

e Generation of grid according to geometry of flow.

e The student can able to select appropriate discretization methodto solve given problem.

e Application of CFD techniques foraerospaceproblems.
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UNIT 1
Introduction to Computational Fluid Dynamics

1. 1 COMPUTATIONAL FLUID DYNAMICS

Computational fluid dynamics constitutes a new "third approach” in the philosophical study and
development of the whole discipline of fluid dynamics. Computational fluid dynamics has certainly
evolved, integrating not only the disciplines of fluid mechanics with mathematics but also computer
science, as illustrated in Figure 1.1.

Engineering
(Fluid
Dynamics)

Computational

Computer
Science

Mathematics

Figure 1.1 The different disciplines involved in computational fluid dynamics

The physical characteristics of the fluid motion can usually be described through fundamental
mathematical equations, usually in partial differential form, which govern a process of interest and are
often called governing equations in CFD. In order to solve these mathematical equations, computer
scientists using high- level computer programming languages convert the equations into computer programs
or software packages.

The “computational” part simply means the study of the fluid flow using numerical simulations,
which involves employing computer programs or software packages performed on high-speed digital
computers to attain the numerical solutions. CFD has also become one of the three basic methods or
approaches that can be employed to solve problems in fluid dynamics and heat transfer. As demonstrated
in Figure 1.2, the approaches that are strongly interlinked do not work in isolation.

Traditionally, both experimental and analytical methods have been used to study the various
aspects of fluid dynamics and to assist engineers in the design of equipment and industrial processes
involving fluid flow and heat transfer. With the advent of digital computers, the computational (numerical)
aspect has emerged as another viable approach. Although the analytical method is still practiced by many,
and experiments will continue to be significantly performed, the trend is clearly toward greater reliance on
the computational approach for industrial designs, particularly when the fluid flows are very complex.
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Experimental
Fluid
Dynamics

Analytical
Fluid
Dynamics

Computational
Fluid
Dynamics

Figure 1.2 The three basic approaches to solve problems in fluid dynamics and heat transfer.

1.2 ADVANTAGES OF COMPUTATIONAL FLUID DYNAMICS (CFD)

With the rapid advancement of digital computers, CFD is poised to remain at the forefront of cutting- edge
research in the sciences of fluid dynamics and heat transfer. Also, the emergence of CFD as a practical
tool in modern engineering practice is steadily attracting much interest.

CFD complements experimental and analytical approaches by providing an alternative cost
effective means of simulating real fluid flows.

CFD substantially reduces lead times and costs in design and production compared with
experimentally based approaches and offers the ability to solve a range of complicated flow
problems where the analytical approach is lacking.

CFD has the capacity to simulate flow conditions that are not reproducible in experimental tests
found in geophysical and biological fluid dynamics, such as nuclear accident scenarios or scenarios
that are too huge or too remote to be simulated experimentally (e.g., the Indonesian Tsunami of
2004).

CFD can provide detailed visualization and comprehensive information when compared to
analytical and experimental fluid dynamics.

CFD permits alternative designs to be evaluated over a range of dimensionless parameters that may
include the Reynolds number, Mach number, Rayleigh number, and flow orientation. The
utilization of such an approach is usually very effective in the early stages of development for fluid-
system designs.

CFD can provide detailed information and understanding of the flow processes to be obtained, such
as the occurrence of flow separation or whether the wall temperature exceeds some maximum limit.

1.2.1 DISADVANTAGES OF COMPUTATIONAL FLUID DYNAMICS (CFD)
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o In spite of CFD’s advantages, the reader must also be fully aware of some inherent
limitations of applying CFD. Numerical errors exist in computations; therefore, there will
be differences between computed results and reality.

o Visualization of numerical solutions using vectors, contours, or animated movies of
unsteady flows is by far the most effective way of interpreting the huge amount of data
generated from the numerical calculation. However, there is a danger that an erroneous
solution, which may look good, will not correspond to the expected flow behavior.

o Any numerical results obtained must always be thoroughly examined before they are
believed. Hence, a CFD user needs to learn how to properly analyze and make critical
judgments about the computed results.

1.3 COMPUTATIONAL FLUID DYNAMICS AND ITS IMPORTANCE AS RESEARCH TOOL

CFD can be employed to better understand the physical events or processes that occur in the flow of fluids
around and within the designated objects. These events are closely related to the action and interaction of
phenomena associated with dissipation, diffusion, convection, boundary layers, and turbulence. Whether
the flows are incompressible or compressible, many of the most important aspectsof these types of flows
are non-linear and, as a consequence, often do not have

any analytic solution. This motivates the search for numerical solutions for the partial differential equations
using CFD.

CFD, analogous to wind-tunnel tests, can be employed as a research tool to perform numerical
experiments. CFD can be utilized to better understand the observed flow structures and some important
physical aspects of a flow field, similar to areal laboratory experiment.

CFD simulations can work harmoniously with experiments, providing not only qualitative comparison but
also a means to interpret some basic phenomenological aspects of the experimental condition. More
important, numerical experiments can provide more comprehensive information and details of the flow
visualized in three dimensions, , when compared to laboratory experiments.

1.4 COMPUTATIONAL FLUID DYNAMICS AND ITS IMPORTANCE AS DESIGN TOOL

CFD is becoming an integral part of the engineering design and analysis environment in prominent
industries. Companies are progressively seeking industrial solutions through the extensive use of CFD for
the optimization of product development and processes and/or to predict the performance of new designs
before they are manufactured or implemented.

Software applications can now provide numerical analyses and solutions to pertinent flow problems
through the employment of common desktop computers. As a viable design tool, CFD has assisted by
providing significant and substantial insights into the flow characteristics within the equipment and
processes required to increase production, improve longevity, and decrease waste. Increasing computer
processing power is certainly revolutionizing the use of CFD in new and existing industries.

1.5 APPLICATION OF CFD TO VARIOUS ENGINEERING PROBLEMS

1.5.1 Aerospace

Computational fluid dynamics has certainly enjoyed a long and illustrious history of development and
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application in the aerospace and defense industries. To maintain an edge in a very competitive
environment, CFD is playing a crucial role in overcoming many challenges faced by these industries in
improving flight and in solving a diverse array of designs. Indeed, many engineers associate CFD withits
well-known application to aerodynamics in the calculation of the lift force on an aircraft wingspan.

Figure 1.3 Example of CFD results for applications in the aerospace and defense industries

Figure 1.3 illustrates the simulation of fluid path lines in the vicinity of an F18 jet (left) and prediction of
pressure coefficient contours at a 100 angle of attack around a supersonic missile system with grid fins
(right). These are just a small sample of the numerous applications of CFD in aerodynamic design and
military applications. CFD has also been employed in resolving a number of complex operational problems
in aircraft design, such as studying the impact of trailing vortices on the safe operation of successive aircraft
taking off and landing on a runway, as well as in enhancing passenger and crew comfort by improving
cabin ventilation, heating, and cooling.

1.5.2 Automobile Engineering

Automobile engineers are increasingly relying on more simulation techniques to bring new vehicle design
concepts to fruition. Computer-aided engineering has been at the forefront of creating innovative internal
systems that will enhance the overall driving experience, impro ve driver and passenger comfort and safety,
and advance fuel economy. CFD has long been an essential element in automotive design and manufacture.

CFD in automotive engineering has many advantages. The technology has delivered the ability to shorten
cycles, to optimize existing engineering components and systems to improve energy efficiency and to meet
strict standards and specifications, to improve the in-car environment, and to study importantexternal
aerodynamics, as illustrated in Figure 1.4.
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Figure 1.4 Examples of automotive aerodynamics
1.5.3 Biomedical Science and Engineering

Nowadays,medical researchers rely on simulation tools to assist in predicting the behavior of blood flow
inside the human body. Computational simulations can provide invaluable information that is extremely
difficult to obtain experimentally, and they allow many variations of fluid-dynamics problems to be
parametrically studied. Figures 1.5 and 1.6 illustrate just one of the many sample applications of CFD in
the biomedical area, in this case where blood flows through originally stenosed and virtually stented
arteries are predicted. With the breadth of physical models and advances in areas of fluid—structure
interaction, particle tracking, turbulence modeling, and better meshing facilities, rigorous CFD analysis is
increasingly performed to study the fluid phenomena inside the human vascular system.

Maximum WSS= 85 Pa Maximum WSS= 8 Pa
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Figure 1.5 Example of CFD prediction of wall shear stress (WSS) for originally stenosed and virtually
stented arteries

Original Stenosed Artery
Virtually Stented Artery
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Figure 1.6 Example of predicted velocity profiles for originally stenosed and virtually stented arteries.
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1.5.4. Chemical and Mineral Processing

World-wide, many necessities revolve around the chemical and mineralprocessing industries. By applying
large quantities of heat and energy to physically or chemically deform raw materials, these industries have
certainly helped to mould essential products for food and health as well as vital advanced technological
equipment in computing and biotechno logy. In the face of increasing industrial competitiveness, these
industries are confronted with major challenges in meeting the world’s demands and present needs without
compromising the future. This translates into making operational processes become more energy efficient,
safer, andmore flexible whilst better containing and reducing emissions.

Gas cyclone Hydro-cyclone

Figure 1.7 Example of CFD application in the simulation of a gas cyclone and a hydrocyclone.

The detailed information about the transport of liquid and gases gained through the use of CFD and
population balance approaches ensures that engineers have the best available data to work with in order
to increase yield by improving fluid flows, thereby reducing operating costs and increasing system
efficiency. Figure 1.7 illustrates a separation process in mineral processing that involves the use of gas
cyclones and hydro-cyclones. A gas cyclone is a commonly used apparatus that utilizes gravity and
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centrifugal force to separate solid particles from a gas stream.

1.5.5. Civil and Environmental Engineering

CFD simulations have been at the heart of resolving many environmental issues. For instance, CFD has
been used to predict the pollutant plume dispersion from a cooling tower subject to wind conditions, as
shown in Figure 1.8. In addition,CFD can assist in ensuring compliance with strict regulat ions during the
early design stages of construction. Figure 1.9 represents pre-construction simulation for a new 22- m tank
at a water treatment plant. Owing to the huge construction cost, whichmay exceed millions of dollars,
virtual computer-aided models can be built and analyzed that greatly save time and cost in exploring all
aspects of design before construction is begun. To determine the feas ibility of such a construction,
flowmodeling is also performed (also shown in Figure 1.9), which provides insights into the flow behavior
for the proposed tank that would not have been possible through physical modeling.

Figure 1.9 Example of CFD application to the construction of a new tank at a water treatment
plant. The top right-hand corner of the figure describes the CFD simulation of the water tank that will be
installed within the excavated construction site

The added understanding gained from CFD simulation provides confidence in the design proposal, thus
avoiding the added costs of over-sizing and over-specification, whilst reducing risk.
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1.5.6. Metallurgy

CFD has been very useful in studying various metallurgical processes and various aspects of a specific
process. CFD has been shown to provide an insightful understanding of an existing process, of
modification and optimization of the operation and design in an existing process, and of new process
development. It is worthwhile mentioning that metallurgical processes are challenging for CFD modeling
since many of the phenomena have not yet been properly described or incorporated into the general CFD
framework. Nevertheless, many new and significant developments of multi-physics models are taking
place in aptly simulating increasingly complicated industrial processes involving flow and transport of
mass, momentum, energy, and chemical species in multi-phase and high-temperature reactive systems.
The use of CFD in simulating heterogeneous and slow dissolution of packed bed coke particles is
illustrated in Figure 1.10.

Figure 1.10 Example of CFD application to predict molten iron flow (left, timeline) and carbon
dissolution (right, concentration) in the blast furnace hearth.

1.5.7. Nuclear Safety

During the last decade, the need for more accurate computational models for relevant safety analyses of
nuclear facilities has sparked an escalating interest in CFD to feasibly predict a number of important flow
phenomena that otherwise may not have been possible through other simplified approaches.

Some specific problems, such as those arising from pressurized thermal shock, coolant mixing, and thermal
stripping, as well as containment issues in nuclear reactors, have certainly motivated enormous research
activities for the application of CFD to analyze such problems.

Figure 1.11 Example of CFD application to the prediction of turbulent mixing in the ROCOM
test facility during boron dilution transients
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CFD calculations have been performed for coolant mixing in pressurized water reactors. This problem is of
significant interest to the nuclear community, particularly in attempting to understand the stationary and
transient mixing of coolant in streamlined break and boron dilution scenarios, where the mixing
phenomena have tremendous impact on the economical operation and structural integrity of such facilities.
Figure 1.11 illustrates the case of a pump start-up due to a strong impulse-driven flow at the inlet nozzle,
where the horizontal part of the flow dominates in the down comer in a pressurized water reactor.

1.5.8. Power Generation

In an increasingly competitive energy market, utilities and equipment manufacturers are turning to CFD to
provide a technological edge through a better understanding of the equipment and processes within these
industries. Although traditional electric-power—generation sources are stillwidely used, renewable power
sources, such as wind energy, are emerging as a potential alternative for power generation. To maximize
return on investment, CFD is being employed to optimize the turbine blades for generating constant power
under varying wind conditions, as demonstrated by a typical three-dimensional simulation of the
hydraulics in acomplete Francis turbine depicted in Figure 1.12.

Figure 1.12 Example of CFD application to prediction of the velocity field of a wind turbine and
in the vicinity ofa proposed wind farm for power.

CFD is also the only technology that has proven to accurately model wind- farm resource distribution,
especially for highly complex terrainwith steep inclines, as shown in the same figure. Signicantly, CFD
has allowed the positioning of turbines throughout an area to achieve efficient wind capture and
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tominimizewake interaction.
1.5.8. Sports Simualtion

Very recently, one of the most innovative uses of CFD in the sports arena is to “design” the optimum
stroke to achieve peak propulsive performance for elite swimmers, as demonstrated by the example in
Figure 1.13.

v'.:?-‘ ”
Flow v // direction

pathlines

Oilfilm lines
Figure 1.13 Example of CFD application for designing the optimum stroke.

In aspiring to attain an extra edge, USA Swimming, the national governing body for competitive swimming
in the United States, commissioned CFD investigations to evaluate the flow around the hand and forearm
of a swimmer during the propulsion phases of the freestyle and butterfly strokes. By applying CFD, steady-
state lift and drag forces for the hand and arm are determined through a sophisticated turbulence model
and adaptive meshing.

Through CFD, Sports Engineering Research Group (SERG) redesigned the Olympic bikes’ forks and
handlebar arrangement. CFD also helped the team to choose the most streamlined design for the
aerodynamic helmet, as exemplified in Figure 1.14. By better understanding the flow pathlines over the
aerodynamic helmet, a range of helmet designs were manufactured to accommodate different head styles,
achieving the ultimate cycling efficiency. SERG’s recommendations ensured the British cycling team had
the competitive advantage in their quest for gold.
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Figure 1.14 Example of CFD simulation in designing the ultimate aerodynamic helmet.

1.6 GENERAL PROCEDURE OF CFD

The codes provide a complete CFD analysis, consisting of three main elements:

e Pre-processor
e Solver
e Post-processor

Figure 1.15 presents a framework that illustrates the interconnectivity of the three aforementioned
elements within the CFD analysis.

1.7 PROBLEM SETUP—PRE-PROCESS

1.7.1 Creation of Geometry—Step 1

The first step in any CFD analysis is the definition and creation of the geometry of the flow region, i.e.,
the computational domain for the CFD calculations. It is important that the reader should always
acknowledge the real physical flow representation of the problem that is to be solved, as demonstrated by
the respective physical domains in Figures 1.16. One important aspect that the reader should always note
in the creation of the geometry for CFD calculations is to allow the flow dynamics to be sufficiently
developed across the length L of the computational domains.

1.7.2 Mesh Generation—Step 2

The second step, mesh generation, is one of the most important steps in the preprocess stage after the
definition of the domain geometry. CFD requires the subdivision of the domain into a number of smaller,
non-overlapping subdomains in order to solve the flow physics within the domain geometry that has been
created; this results in the generation of a mesh (or grid) of cells (elements or control volumes) overlying
the whole domain geometry. The essential fluid flows that are described in each of these cells are usually
solved numerically, so that the discrete values of the flow properties, such as the velocity, pressure,
temperature, and other transport parameters of interest, are determined. This yields the CFD solution to
the flow problem that is being solved. The accuracy of a CFD solution is strongly influenced by the number
of cells in the mesh within the computational domain.
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Pre-processor Governing equations solve on a mesh
Transport Equations Physical Modals
oty || |+ wss : Tuorce
+ Momentum « Combustion
e Energy « Radiation
e Othertransport
variables
Equation of state
« Supporting physical

Post-processor | Solver Settings

o Initialization

» Solution control

s X-Y plots e Monitoring solution
« Contour

Figure 1.15 The interconnectivity functions of the three main elements within a CFD analysis
framework.
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Figure 1.16 Fluid flowing between two stationary parallel plates.
Figure 1.17 shows a mesh of 20 (L) x 20 (H) cells, resulting in a total of 400 cells allocated for the Case of
CFD problem between two stationary parallel plates. For more complex geometries, meshing by triangular
cells allows flexibility in mesh generation for geometries having complicated shape boundaries. Figure
1.18 illustrates a typical distribution of triangular cells within the computational domain for the Case of
problem of fluid passing over two cylinders, with a mesh totaling 16,637 cells mapping the whole flow
domain.
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Figure 1.17 Structured meshing for fluid flowing between two stationary parallel plates.

Figure 1.18 Unstructured meshing for fluid passing over two cylinders in an open surrounding

1.7.3 Selection of Physics and Fluid Properties—Step 3

Many industrial CFD flow problems may require solutions to very complex physical flow processes, such
as the accommodation of complicated chemical reactions in combusting fluid flows. The inclusion of
combustion and possibly radiation models in the CFD calculations is generally a prerequisite for successful
modeling of these types of flows.

Combustion and radiation processes have the tendency to strongly influence the local and global
heat transport, whichconsequently affects the overall fluid dynamics within the flow domain. It is therefore
imperative that the CFD user carefully identify the underlying flow physics unique to the particular fluid-
flow system. For clarity and ease of reference, a flowchart highlighting the various flow physics that may
be encountered within the framework of CFD and heat transfer processes is presentedin Figure 1.19.

Under the main banner “Computational Fluid Dynamics & Heat Transfer,” a CFD user declare s initially
whether simulations of the fluid-flow system are to be attained for transient/unsteady or

steady solutions. He/she subsequently defines which class of fluids that the flows belong to: inviscid or
viscous.
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| Computational Fluid Dynamics & Heat Transfer

| Transient/Unsteady |—>

Inviscid Fluid Viscous Fluid Heat Transfer |

| Compressible | [ Laminar | [Turbulent] [Conduction | [Convection | [Radiation |
| F Y
Compressible Incompressible
Mach = 0.3 Mach =03
Internal External
(Pipe, Channel) (Airfoil, Ship)

Figure 1.19 A flowchart encapsulating the various flow physics in CFD.
1.7.4 Specification of Boundary Conditions—Step 4

The complex nature of many fluid- flow behaviors has important implications for which boundary
conditions are prescribed for the flow problem. A CFD user needs to define appropriate conditions that
mimic the real physical representation of the fluid flow in a solvable CFD problem.

The fourth step in the pre-process stage deals with the specification of permissible boundary conditions
that are available for impending simulations. Evidently, where inflow and outflow boundaries exist within
the flow domain, suitable fluid-flow boundary conditions are required to accommodate the fluid behavior
upon entering and leaving the flow domain.

Schematic descriptions of the boundary conditions are demonstrated in Figure 1.20 for Case of CFD
problem between two stationary parallel plates.

1.8 NUMERICAL SOLUTION—CFD SOLVER

The appropriate use of either an in-house or a commercial CFD code requires a core understanding of the
underlying numerical aspects of the CFD solver. This section focuses on the solver element. A CFD solver
can usually be described and envisaged by the solution procedure presented in Figure 1.21.
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Figure 1.20 Boundary conditions for an internal flow problem: CFD problem of flow between two

stationary parallel plates.
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Figure 1.21 An overview of the solution procedure.

1.8.1 Initialization and Solution Control—Step 5

e Iftheinitial conditions are close to the final steady-state solution, the

The prerequisite processes in the solution procedure that have implications for the computational solution
are initialization, solution control, monitoring solution, CFD calculation, and checking for convergence.

The fifth step of the CFD analysis encompasses two prerequisite processes within the CFD solver:
initialization and solution control. Two reasons that a CFD user should undertake the appropriate selection

of initial conditions are
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quicker the iterative procedure will converge and yield results in a shorter
computational time.

e Ifthe initial conditions are far away from reality, the computations will
require longer computational efforts to reach the desired convergence. Also,
improper initial conditions may lead to the iterative procedure’s misbehaving
and possibly “blowing up” or diverging.

Second, setting up appropriate parameters in the solution control usually entails the specification of
appropriate discretization (interpolation) schemes and selection of suitable iterative solvers.

1.8.2 Monitoring Convergence—Step 6

The sixth step of the CFD solver involves the interlinking operations of three prerequisite processes:
monitoring solution, CFD calculation, and checking for convergence. Two aspects that characterize a
successful CFD computational solution are convergence of the iterative process and grid independence.

1.9 RESULT REPORT AND VISUALIZATION—POST-PROCESS

CFD has a reputation for generating vivid graphic images and, while some of the images are promotional
and are usually displayed in stunning and superb colorful output, the ability to present the computational
results effectively is an invaluable design tool.

19.1 X-YPlots

X-Y plots are mainly two-dimensional graphs that represent the variation of one dependent transport
variable as compared with another, independent variable. They can usually be drawn by hand or more
conveniently by many plotting packages. Such plots are the most precise and quantitative way to present
the numerical data. Often, laboratory data are gathered by straight- line traverses. An X-Y plot of a laminar
velocity profile at the fully developed region for the Case of flow between two stationary parallel plates
is shown in Figure 1.22.

1.9.2 Vector Plots

A vector plot provides the means whereby a vector quantity (usually velocity) is displayed at discrete
points by an arrow, whose orientation indicates direction and whose size indicates magnitude. A vector
plot generally presents a perspective view of the flow field in two dimensions. In a three-dimensional flow
field, different slices of two-dimensional planes containing the vector quantities can be generated in
different orientations to better scrutinize the global flow phenomena.
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Figure 1.22 X-Y plot of a parabolic laminar velocity profile at the fully developed region for the case of flow
between two stationery parallel plates
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Figure 1.23 Velocity vectors showing the flow development along the parallel-plate channel for
Case of flow between two stationery parallel plates

1.9.3 Contour Plots

Contour plotting is another useful and effective graphic technique that is frequently utilized in viewing
CFD results. The proliferation of contour plots ever since the advent of the computer is not surprising. In
CFD, contour plots are one of the most commonly found graphic representations of data. A contour line
(also known as an isoline) can be described as a line indicative of some property that is constant in space.

The equivalent representation in three dimensions is an isosurface. In contrast to X-Y plots, contour plots,
like vector plots, provide

a global description of the fluid flow encapsulated in one view.

1.10 MODELS OF FLUID FLOW

In obtaining the basic equations of fluid motion, the following philosophy is always followed:

1. Choose the appropriate fundamental physical principles from the law of physics,
such as:

a. Mass is conserved.
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b. F=ma (Newton's second law).
c. Energy is conserved.

2. Apply these physical principles to a suitable model of the flow.
3. From this application, extract the mathematical equations which embody such
physical principles.

A solid body is rather easy to see and define- on the other hand, a fluid is a "squishy" substance that is hard
to grab hold of. If a solid body is in translational motion, the veloc ity of each part of the body is the same;
on the other hand, if a fluid is in motion, the velocity may be different at each location in the fluid. How
then do we visualize amoving fluid so as to apply to it the fundamental physical principles?

For a continuum fluid, the answer is to construct one of the four models described below.

1.10.1 Finite Control Volume

Consider a general flow field as represented by the streamlines in Figure 1.24. Let us imagine a closed
volume drawn within a finite region of the flow. This volume defines a control volume Y; a control surface

Sis defined as the closed surface which bounds the volume. The control volume may be fixed in space with
the fluid moving through it, as shown at the left of Figure 1.24.

_F/"'///C/o:rol surface § —F/*r,/"
s

—'P""_b_'-—‘————’

Finite control volume moving

Finite control volume with the fluid such that the

fixed in space with the same fluid particles are always

fluid moving through it in the same control volume
Left figure Right Figure

Figure 1.24 Models of a flow - Finite control volume approach
Alternatively, the control volume may be moving with the fluid such that the same fluid particles
are always inside it as shown at the right of Figure 1.24. In either case, the control volume is a reasonably
large, finite region of the flow. The fundamental physical principles are applied to the fluid inside the
control volume and to the fluid crossing the control surface (if the control volume is fixed in space).

Therefore, instead of lookmg at the whole flow field at once, with the control volume model we limit our
attention to just the fluid in the finite region of the volume itself. The fluid-flow equations that we directly
obtain by applying the fundamental physical principles to a finite control volume are in integral form.
These integral forms of the governing equations can be manipulated to indirectly obtain partial differential
equations. The equations so obtained from the finite control volume fixed in space (left side of Figure
1.24), in either integral or partial differential form, are called the conservation form of the
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governing equations.

The equations obtained from the finite control volume moving with the fluid (right side of Figure 1.24),
in either integral or partial differential form, are called the nonconservation form of the governing
equations.

1.10.2 Infinitesimal Fluid Element

Consider a general flow field as represented by the streamlines in Figure 1.25. Let us imagine an

infinitesimally small fluid element in the flow with a differential volume 4% The fluid element is
infinitesimal in the same sense as differential calculus; however, it is large enough to contain a huge
number of molecules so that it can be viewed as a continuous medium.

-~ p/

Volume dV dv

T s
T

Infinitesimal fluid element

Infinitesimal fluid elemen? moving along a streamline with
fixed in space with the fluid the velocity V equal to the
moving through it local flow velocity at each point
Left figure Right Figure

Figure 1.25 Models of a flow - infinitesimal fluid element approach

The fluid element may be fixed in space with the fluid moving through it, as shown at the left of Figure
1.25. Alternatively, it may be moving along a streamline with a velocity vector V equal to the flow velocity
at each point. Again, instead of looking at the whole flow field at once, the fundamental physical
principles are applied to just the infinitesimally small fluid element itself.

This application leads directly to the fundamental equations in partial differential equation form.
Moreover, the particular partial differential equations obtained directly from the fluid element fixed in
space (left side of Figure 1.25) are again the conservation form of the equations.

The partial differential equations obtained directly from the moving fluid element (right side of Figure
1.25) are again called the nonconservation form of the equations.

1.11 SUBSTANTIAL DERIVATIVE (TIME RATE OF CHANGE FOLLOWING
A MOVING FLUID ELEMENT)



R-20

Before deriving the governing equations, we need to establish a notation which is common in
aerodynamics - that of the substantial derivative.

As the model of the flow, we will adopt the picture shown at the right of Figure 1.25. Here we consideran
infinitesimally small fluid element moving with the flow. The motion of this fluid element is shown in more
detail in figure 1.26.

Fluid element ~
attime =1 ~

v

Same fluid element
attime =1,

-
<

Figure 1.26 Fluid element moving in the fluid flow-illustration for the substantial derivative

Here, the fluid element is moving through cartesian space. The unit vectors along the x, y, and z axes are
i, J, and k, respectively. The vector velocity field in this cartesian space is given by equation (1)

V SUIHV] WK s (1)
where the X, y, and z components of velocity (Equation 1) are given, respectively, by
u=u(xy,z t)
v=v(x,y,7t)
W = W(X, Y, Z, £) s ssssssessssssssens (2)

Note that we are considering in general an unsteady flow, where u, v, and w are functions of both space
and time t. In addition, the scalar density field is given by

At time t1, the fluid element is located at point 1 as in Figure 1.26. At this point and time, the density of
the fluid element is

P1 ZP(X1,Y1, Z1, T1)erererererrerresressessessessessessessessessessessessessessessessessessessessessenns (4)

At time t2, the fluid element is located at point 2 as in Figure 1.26. Hence at time t2, the density of the
fluid element is
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P2 ZP(X2,12) Z2) 12)erererererrerressessessesssssesessesssssesssssssssssssssssssssssssssssssssssssseans (5)

Since p = p (X, Y, z, t), we can expand this function in a Taylor series about point 1 as follows: The
General Expression for Taylor's series of a function f(x) with respect to point a

) = £(@ + F@x —a) + @ (x — a)?

2

pr =+ (L) 2=+ () 2 —w0 + (32) @2 —2)

+ (%—’:) (t, — 1) + (higher-order terms)
1

Dividing equation (6), by t2 - tr and ignoring higher-order terms, we obtain
Pr—p _ (Op\ X2—x  (Op yz—y1+(@ Zz—z|+(@
h—t Ox ) tr—t ), th— 14 9z /), —t ot ),

Examine the left side of the Equation (7). This is physically the average time rate of change in density of
the fluid element as it moves from point 1 to point 2. In the limit, as t> approaches ti, this term becomes
. P2 — P _Dp
,zh_l,n,l t2—t  Dr

we(7)

. (8)

In equation (8) the term , Dp/Dt is a symbol for the instantaneous time rate of change of
density of the fluid element as it moves through point 1. By definition, this symbol is called the
substantial derivative D/Dt.

Note that Dp/Dt is the time rate of change of density of the given fluid element as it moves
through space. Here, our eyes are locked on the fluid element as it is moving, and we are watching
the density of the element change as it moves through point 1.

This is different from (dp/dt)i, which is physically the time rate of change of density at the
fixed point 1. For (dp/0dt);, we fix our eyes on the stationary point 1 and watch the density change
due to transient fluctuations in the flow field. Thus, Dp/Dt and dp/dt are physically and numerically
different quantities.

Now in equation (7), note that
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. X2 — X
Iim 2—5
2 —f rl_rl

. 2 — Vi
llmu_——_v
I, — f2_f]

. 22 — 21
Im —— =

(9)

Substitute equation (8) and equation (9) in to equation (7) and thus, taking the limit of Eq. (2.1) as
tz t1, we obtain

Dp_ o0 O 9 Op
Dr Yox "Vay T Waz v e o)

Examine Equation (10) closely. From it, we can obtain an expression for the substantial derivative
in Cartesian coordinates:

Dt~ o1 ox Ve T "oz
....................................... (11)

o o o
V=i -+j-+k -
o I Ay dz
N ¢ 1) |
- I
&) O
we know that V =ui + vj +wk, then V.1 = ... 8yz ....................................... (13)
D o
—— ==+ {V -¥V)
. Dr Ot
Hence equation (11) DECOMES......cereereererseises s sssssss s sssssssssssssesans (14)

Equation (14) represents a definition of the substantial derivative operator in vector notation;
thus, it is valid for any coordinate system.

D/Dt is the substantial derivative, which is physically that time rate of change following a moving
fluid element;

d/0t is called the local derivative, which is physically the time rate of change at a fixed point;
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V.V is called the convective derivative, which is physically the time rate of change due to the movement
of the fluid element from one location to another in the flow field where the flow properties are
spatially different.

The substantial derivative applies to any flow-field variable, for example, Dp/Dt, DT/Dt, Du/Dt, etc.,
where p and T are the static pressure and temperature, respectively.

1.9 DIVERGENCE OF VELOCITY :ITS PHYSICAL MEANING

Let us consider the divergence of the velocity, 4 - V .This term appears frequently in the equations of fluid
dynamics, and it is well to consider its physical meaning. Consider a control volume moving with the fluid
as sketched below

Finite control volume moving
with the fluid such that the
same fluid particles are always
in the same control volume

This control volume is always made up of the same fluid particles as it moves with the flow; hence, its
mass is fixed, invariant with time. However, its volume and control surface S are changing with time
as it moves to different regions of the flow where different values of p exist. That is, this moving control
volume of fixed mass is constantly increasing or decreasing its volume and is changing its shape, depending
on the characteristics of the flow.

This control volume is shown in Figure below and at some instant in time. Consider an infinitesimal
element of the surface dS moving at the local velocity V, as shown in below figurel.27.

Figure 1.27 Moving control volume used for the physical interpretation of the divergence of velocity.

(Note: velocity = displacement / time ; and displacement = velocity x time )

The change in the volume of the control volume, AY”, , due to just the movement of dS over a time
increment At is, from Figure 1.27, equal to the volume of the long, thin cylinder with base area dS and
altitude (V 4¢) - n, where nis a unit vector perpendicular to the surface at dS.
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AF¥ = [(V Ar) - n]dS = (V Ar) - dS S ¢ 1)

Note: Volume of Cylinder V = base x height ;Here as in previous figure the base is dS and height is (V 42) -
n Hence volume is [(V 41) - n] dS

Over the time increment 4¢, the total change in volume of the whole control volume is equal to the
summation of Equation (15) over the total control surface. In the limit as dS— 0, the sum becomes the
surface integral

JJ(V&:} - dS
5

If this integral (equation 2) is divided by A¢, the result is physically the time rate of change of the control volume,

Dy /D
denoted by /Dr;
Dy 1
Dr = EII(V-.&:) - dS = JIV -dS
5 s
................ a7
Note that we have written the left side of Equation (17) as the substantial derivative of T , because

we are dealing with the time rate of change of the control volume as the volume moves with the flow (we
are using the picture of model 2). and this is physically what is meant by the substantial derivative.

Applying the divergence theorem from vector calculus (equation 18) to the right side of Equation (17)we
obtain equation 19,

(Note: General form of Divergence Theorem is given in equation (18)

f/v(v-p)dV=yj§(F-ﬁ)ds.

Df:J][(v-V)dV

D

Now, let us imagine that the moving control volume in Figure (slide no.23) is shrunk to a very small

volume &# 7 | essentially becoming an infinitesimal moving fluid element. Then Equation (19) can
be written as
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250~ [fos - ar

Assume that 2% is small enough such that A - V' is essentially the same value through out

3% Then the integral in Equation (20), in the limit shrinks to zero is given by (V.V) e

From equation (20), we have,

—5— =(V-V)or
....................... (21)
o.v_ L DEY)
oY Dt
...................... (22)

Examine Equation (22) closely. on the left side we have the divergence of the velocity; On the right side
we have its physical meaning. That is, V.V is physically the time rate of change of the volume of a
moving fluid element, per unit volume.
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UNIT -1I
Governing Equations of Fluid dynamics

2.1 THE CONTINUITY EQUATION
In obtaining the basic equations of fluid motion, the following philosophy is always followed:

(1) Write down a fundamental physical principle (mass is conserved for continuity equation)
(2) Apply it to a suitable model of the flow, and
(3) Obtain an equation which represents the fundamental physical principle.

In this section, we will treat the following case:

Physical principle: Mass is conserved.

The governing flow equation which results from the application of this physical principle to any
one of the four models of the flow is called the continuity equation.Moreover, in this section we
will carry out in detail the application of this physical principle using all four of the flow models.

That is, we will derive the continuity equation four different ways, obtaining in a direct fashion four
different forms of the equation. Then, by indirect manipulation of these four different forms, we will
show that they are all really the same equation. In addition, we will invoke the idea of conservation
versus nonconservation forms, helping to elucidate the meaning of those words.

2.1.1 MODEL OF THE FINITE CONTROL VOLUME FIXED IN SPACE

Consider the flow model, namely, a control volume of arbitrary shape and of finite size. The volume is
fixed in space. The surface that bounds this control volume is called the control surface. The fluid moves
through the fixed control volume (Model 1), flowing across the control surface. This flow model is shown
in more detail in Fig. 2.1. At a point on the control surface in

Fig. 2.1, the flow velocity is V and the vector ele mental surface area is dS. Also let @ be an
elemental volume inside the finite control volume. Applied to this control volume, our fundamental
physical principle that mass is conserved means

Net mass flow our  time rate of
of control volume = decrease of mass
through surface S inside control volume

or B=C

where B and C are just convenient symbols for the left and right sides, respectively.
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ds

Fig. 2.1 Finite control volume fixed in space

First, let us obtain an expression for B in terms of the quantities shown in Fig. 2.1. The mass flow of a
moving fluid across any fixed surface (say, in kilograms per second or slugs per second) is equal to the
product of (density) x (area of surface) x (component of velocity perpendicular to the surface). Hence the
elemental mass flow across the area dS is

PV, dS = pV - dS

The net mass flow out of the entire control volume through the control surface S is the summation over S
of the elemental mass flow expressed in equation (2)

Now let us consider the right side of equation (1), The mass contained within the elemental volume
4% is p 7~ The total mass inside the control volume is therefore

[1foar

The time rate of increase of mass inside v is then

al o

v
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In turn, the time rate of decrease of mass inside is the negative of the above; i.e.,

Hfror-e

v

................... (6)
Substitute equation (3) and equation (6) in to equation (1), we get
[] V~dS———aJJJ dv
P T Ot =
S ¥
................... (7)
d i,
-y pd¥ + pV -dS =0
¥ S
.............. (8)

Equation (8) is an integral form of the continuity equation. It was derived on the basis of a finite
control volume fixed in space.

The fact that the control volume was fixed in space leads to the specific integral form given by Eqg. (8),
which is called the conservation form.

2.1.2 MODEL OF THE FINITE CONTROL VOLUME MOVING WITH THE FLUID

Consider the flow model, namely, a control volumee of finite size moving with the fluid. This control
volume, as it moves with the fluid, is always composed of the same identifiable elements of mass; i.e., the
moving control volume has a fixed mass. On the other hand, as this fixed mass moves downstream, the
shape and volume of the finite control volume can, in general, change. Consider an infinitesimally small
element of volume <*"" jnside this finite control volume; the mass of this small element is

£ d¥7. " where p is the local density.

Then, the total mass of the finite control volume is given by

Mass::‘[;[deV

Now recall the physical meanmg of the substantial denvatlve ; it expresses the time rate of change of any
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property of a fluid element as it moves with the flow. Since our finite control volumee is made up of an
infinite number of infinitesimally small fluid elements, all with a fixed, unchanging mass, and hence all
with substantial denvatives of these unchanging masses equal to zero, we can write for the finite control
volume, from Eq. (9),

B[ fn =0

Equation (10) is an integral form of the continuity equation It was derived on the basis of a finite
control volume moving with the fluid. The fact that the control volume is moving with the fluid leads to
the specific integral form given by Eq. (10), which is called the Non-conservation form.

2.1.3 MODEL OF AN INFINITESIMALLY SMALL ELEMENT FIXED IN SPACE

Consider the flow model, namely, an infinitesimally small element fixed in space, with the fluid moving
through it (Model 3). This flow model is shown in more detail in Fig. 2.2. Here, for convenience we adopt
a cartesian coordinate system, where the velocity and density are functions of (x, y, z) space and time t.
Fixed in this (x, y, z) space is an infinitesimally small element of sides dx, dy, and dz (Fig. 2.2a). There is
mass flow through this fixed element, as shown in Fig. 2.2b. Consider the left and right faces of the element
which are perpendicular to the x axis. The area of these faces is dy dz. The mass flow through the left face
is (pu) dy dz. Since the velocity and density are functions of spatial location, the values of the mass flux
across the right face will be different from that across the left face; indeed, the difference in mass flux
between the two faces is simply [ (o (pu) 6X] dx. Thus, the mass flow across the right face can be expressed
as {pu + [ o (pu)/ 6X] dy dz. The mass flow across both the left and right faces is shown in Fig. 2.2b. In a
similar vein, the mass flow through both the bottom and top faces, which are perpendicular to the y axis,
iS (pv) dx dz and {pv + [ @ (pv)/ ay] dy} dx dz, respectively. The mass flow through both the front and back
faces, which are perpendicular to the z axis, is (pw) dx dy and

{pw + [ o (pw) 6z] dz} dx dy, respectively.
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y p=p(xyzt)
1 V=ud+vj+wk
u=u(xyzt)
vev(xyzt)
w=w(x,yzt)

. 3
: dy
[N B
i s —
fo——— dx ——-»fr"dz
> >
k i
3 (pv)
ov+ 20Y) 4y dxds
ay
T / Low +2L8%) g7 | dx dy
- < v'
|
I a(
(pu ) dy dz : Lou+ =B ax) dy az
: it IO sl — >

( pw ) dx dy (pv)dxd:

Fig. 2.2 Model of the infinitesimally small element fixed in space and a diagram of the mass fluxes
through the various faces of the element for a denvation of the continuity equation.

Note that u, v, and w are positive, by convention, in the positive X, y, and z directions, respectively. Hence,
the arrows in Fig. 2. 2 show the contributions to the inflow and outflow of mass through the sidesof the
fixed element. If we denote a net outflow of mass as a positive quantity, then from Fig. 2.2, we have

Net outflow in x direction:

)(pu) _ Opu)
[pu-l——g dx]dydz—(pu) dydz——gdxdydz

Net outflow in y direction:

d(pv
[PV + % dy] dx dz - (pv) dx dz = ag;v)
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Net outflow in z direction:

Olpw) 0
[PW“‘E-"Z}dxdy-(pW)dxdy=%@dxdydz

................... (13)
Hence, the net mass flow out of the element is given by
Net mass flow = [ (pu) L pv) __3(pw)
i ay + % dx dy dz .

The total mass of fluid in the infinitesimally small element is p (dx dy dz),; hence the time rate of increase
of mass inside the element is given by

. 0
Time rate of mass increase = d (dx dy dz)

ot

Physical Principle of mass conservation: The net mass flow out of the element must equal the time rate
of decrease of mass inside the element. Denoting the mass decrease by a negative quantity

d(pu) (pv) , B(pw) dp
dvdy dz = ——(dx dy dz
[6x+6y 5 | o= glae
................... (16)
dp  [0(pu) A O(pv) O(pw)]
6z+[ > ' oy ' oz ]“0
................... (17)
We Know that,
V..V 2 z—-+-v(;—)—+- u(‘i
................... (18)
Substitute equation (18) to equation (17)
0
LAV (pV) =
ot
................... (19)

Equation (19) is a partial differential equation form of the continuity equation. The fact that the element
was fixed in space leads to the specific differential form given by Eq. (19), which is called the
conservation form.
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2.1.4 MODEL OF AN INFINITESIMALLY SMALL ELEMENT MOVING WITH THE FLUID

Consider the flow model, namely, an infinitesimally small fluid element moving with the flow. This fluid
element has a fixed mass, but in general its shape and volume will change as it moves downstream.

Denote the fixed mass and variable volume of this moving fluid element by &7z and ¥ . :
respectively. Then

om — p OF

Since mass is conserved, we can state that the time rate of change of the mass of the fluid element is zero
as the element moves along with the flow.

D(om
L (21)
Sub. Equation (20) in to equation (21) and differentiating, we have
D(p ov O D(ovy”
S\ )=(W' —e+p———( ):O
Dt Dt Dt
D 1 D{o¥"
22 4| =20 g
Dt oY Dt
................... (22)
Note: W.K.T Divergence of velocity is
l =
GV e 2OF)
0¥ Dt
................... (23)
Substitute equation (23) in equation (22),
2P PN =0
— ) ® oty
Dt f
................... (24)

Equation (24) is a partial differential equation form of the continuity equation, The fact that the
element is moving with the flow leads to the specific differential form given by Eq. (23), which is
called the non-conservation form.
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215 ALL THE EQUATIONS ARE ONE: SOME MANIPULATIONS

Finite control
volume fixed
in space

Finite control
volume of fixed
mass moving

with the flow

1.
d

— P 5 W eV t I pVedS=0 4——@“—’\» gl W pdV=0

v v

S

Integral form

: [ntegral form
Conservation form

Nonconservation form

v

S e
ST
B gt Y
P
- T

Infinitesimally small

Path C
Path D

element fixed in space Infinitesimally small fluid clement
—— of fixed mass moving with the flow
1L V.
P .o . Path B '
= tVe (pV)=0 @ —P> gf’+pv-v=o ———

Differential form

A Differential form
Conservation form

Nonconservation form

Fig. 2.3 The different forms of the continuity equation, their relationship to the different models of
the flow, and the schematic emphasis that all four equations are essentially the same -they can each
be obtained from the other.

Now consider Fig. 2.3, which shows the same four flow models. However, in Fig. 2.3 the specific form
of the continuity equation obtained directly from each model is displayed underneath the sketch of the
particular model. Then, we will show, by mampulation, that the equations in all four boxes (I to IVin
figure 2.3) are simply different forms of the same equation.

Examining Fig. 2.3, we see four different forms of the continuity equation, each one a direct product of the
flow model used in its derivation. Two of the forms are integral equations; the other two are partial
differential equations. Two of the equations are in conservation form; the other two are in
nonconservation form. However, these four equations are not fundamentally different equations;
rather, they are four different forms of the same equation, namely, the continuity equation. Any of these
four forms can be derived by manipulation from any of the others. This is symbolized by paths A through
D sketched in Fig. 2.3.

First, let us examine how the partial differential equation form can be obtained from the integral equation
form; i.e., let us examine path C in Fig. 2.6. we know,
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o
2 ([[par s [[ov-as—o
¥+ S

Since the control volume used for the derivation of Eq. (25) is fixed in space, the limits of integration for
the integrals in Eq. (25) are constant, and hence the time derivative o/ ot can be placed inside the integral.

[Jjg—fd“ﬁ’“+JJpV*dS=0

¥ h

Applying the divergence theorem from vector calculus, the surface integral in Eq. (26) can be expressed
as a volume integral:

[[ov)-as=|][v-wv)ar

§ Yoo 7)
Substituting Eqg. (27) into (26), we have
[[[2Zar[[[v-wvrar-o
¥ L
................... (28)
Op
—+ V- V=
[[[[55+v-o]ar o
(o) LA (29)

Since the finite control volume is arbitrarily drawn in space, the only way for the integral in Eq. (29) to
equal zero is for the integrand to be zero at every point within the control volume. Hence, from Eq. (29)

dp B
E—Fv'(pV)—ﬂ




Equation (30) is precisely the continuity equation in partial differential equation form that is displayed in
box Il in Fig. 2.3. Hence, we have shown how the integral form in box I can, after some manipulation,
yield the differential form in box Ill. Again, note that both the equations in boxes | and Il are in
conservation form; the above manipulation does not change that situation.
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physical boundary conditions

-+

e The near wall flow is considered as laminar and the velocity varies linearly with distance from the
wall

e Noslip condition: u=v=0.
e The velocity is constant along parallel to the wall and varies only in the direction normal to the
wall.

e No pressure gradients in the flow direction.

Types of boundary conditions: In general, boundary
conditions for any PDE can be classified into 4 major
categories:

Dirichlet boundary condition: - in which the dependent variables themselves are prescribed along
the domain boundary. 2) Von Neumann boundary condition: - in which the normal gradient of the
dependent variables is prescribed along the boundary. 3) Robin boundary condition: - in which the
boundary conditions are a linear combination of the Dirichlet and Von Neumann type. 4) Mixed
boundary conditions: - in which certain portions of the boundary are defined as Dirichlet type,

while others as Von Neumann type.

Shock fitting and shock capturing


https://en.wikipedia.org/wiki/Laminar_flow
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In computational fluid dynamics, shock-capturing methods are a class of techniques for

computing inviscid flows with shock waves. The computation of flow containing shock waves

%%%gég%gf%ﬁ,@wégﬁ@aswS&@%gous changes in flow variables such as pressure,
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velocity across the shock. In shock-capturing methods, the governing equations of inviscid flows
(i.e. Euler equations) are cast in conservation form and any shock waves or discontinuities are
computed as part of the solution. Here, no special treatment is employed to take care of the shocks
themselves, which is in contrast to the shock-fitting method, where shock waves are explicitly
introduced in the solution using appropriate shock relations (Rankine—Hugoniot relations). The
shock waves predicted by shock-capturing methods are generally not sharp and may be smeared
over several grid elements. Also, classical shock-capturing methods have the disadvantage that

unphysical oscillations (Gibbs phenomenon) may develop near strong shocks.

Impact of partial differential eqautions on CFD.

1. They are a coupled system of nonlinear partial differential equations, and hence
are very difficult to solve analytically. To date, there is no general closed-form
solution to these equations. (This does not mean that no general solution exists
we just have not been able to find one.)

2. For the momentum and energy equations, the difference between the non-
conservation and conservation forms of the equations is just the left-hand side.

The right-hand side of the equations in the two different forms is the same.

3. Note that the conservation forms of the equations contain terms on the left-hand
side which include the divergence of some quantity, such as V - (pV) or
V + (puV). For this reason, the conservation form of the governing equations
15 sometimes called the diverzence form.

Classification of Quasi-Linear Partial differential equation,

In CFD applications, computational schemes and specification of boundary conditions depend on
the types of PARTIAL DIFFERENTIAL EQUATIONS. In many cases, the governing equations
in fluids and heat transfer are of mixedtypes. For this reason, selection of computational schemes
and methods to apply boundary conditions are important subjects in CFD.

Description

Partial differential equations (PDES) in general, or the governing equations in fluid dynamics in

particular, areclassified into three categories:

a elliptic
(2) parabolic
@ hyperbolic
Consider a system of quasi linear equations given below
o v v
a5+ by B + 0y ax-!-ﬂ'l {.}u—_h

.

Ju i v v
Gt gyt g T =S

Where u and -
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Solve the above matrix for unknown like du/dx using cramer’s rule. So, replacing first column of
matrix [A] withconstants column vector defining new mareix [B]
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Elliptic Equations

A PDE is elliptic in a region if (b? — 4ac < 0) at all points of the region.



A disturbance is propagated instantly in all directions within the region.
Examples of Elliptic PDEs are Laplace equation and Poisson equation.

The domain of solution for an elliptic PDE is a closed Region R.

Boundary
Condition
Prescribed

Boundary value problem: Only boundary conditions are required to get the solution of elliptic equation.
Steady state temperature distribution of a insulated solid rod.
2. Parabolic Equations
A PDE is parabolic in a region if (b2 — 4ac = 0) at all points of the region.
Time dependent problem: Example of parabolic PDEs is unsteady heat diffusion equation.
a0 a0
ot dx?

Marching type problem: The domain of solution for an parabolic PDE is an open Region.

!

$ , L ? |
T
Solution marches -
Prescribed outward with time from ::S‘C“b‘,d
boundary initial condition ndary
condition | condition
Solution domain for 7
marching problems
- e —— —— ———x

\

\
-

Initial condition i
specified here

Initial-Boundary value problems: Initial condition and two boundary conditions are required.
Examples: Boundary layers, jets, mixing layers, wakes, fully developed duct flows.
3. Hyperbolic Equations

A PDE is hyperbolic in a region if (b?> — 4ac> 0) at all points of the region.



Example of hyperbolic PDEs is wave equation.

’¢ _ ,d%
dx?

The domain of solution for an parabolic PDE is an open Region.
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Initial conditions

Initial boundary value problem: Two Initial conditions and two boundary conditions are required.
Solution may be discontinuous (shock waves) : steady/unsteady compressible flows at supersonic speeds.
Method of Characteristics: A classical method to solve hyperbolic equations with two independent
variables: Applicable to two-dimensional, steady, isentropic, adiabatic, irrotational flow of a perfect gas.
Physical Interpretation
Consider the flow of a body having velocity u in a quiescent fluid.
The movement of this body disturbs the fluid particles ahead of the body.
The propagation speed of disturbance would be equal to speed of sound, a.
The ratio of the speed of body to the speed of sound is called Mach number M=u/a.

Consider the steady two-dimensional velocity potential equation:
(1 — A’z)lm"\‘ '+" ¢\'\ =0

NowA=(1—-M?), B=o0and C=1
Thus, (B* — 4AC = —4(1 — M?))
There are three types of PDEs for the three types of flows.
1 Elliptic PDEs: Subsonic(M < 0).
2 Parabolic PDEs: Sonic(M = 0).

3 Hyperbolic PDEs: Supersonic(M > 0).

The physical situations these types of equations represent can be illustrated by the flow velocity
relative to the speed of sound as shown in Figure 2.1.1. Consider that the flow velocity u is the
velocity of a body moving in the quiescent fluid. The movement of this body disturbs the fluid

particles ahead of the body, setting off the



propagation velocity equal to the speed of sound a. The ratio of these two competing speeds is

defined as Mach number, M=u/a.

For subsonic speed, M < 1, as time t increases, the body moves a distance, ut, which is always
shorter than the distance at of the sound wave (Figure 2.1.1a). The sound wave reaches the
observer, prior to the arrival of the body, thus warning the observer that an object is approaching.
The zones outside and inside of the circles are known as the zone of silence and zone of action,
respectively.

If, on the other hand, the body travels at the speed of sound, M = 1, then the observer does not hear
the body approaching him prior to the arrival of the body, as these two actions are simultaneous
(Figure 2.1.1b). All circles representing the distance traveled by the sound wave are tangent to the
vertical line at the position of the observer. For supersonic speed, M > 1, the velocity of the body
is faster than the speed of sound (Figure 2.1.1c). The line tangent to the circles of the speed of
sound, known as a Mach wave, forms the boundary between the zones of silence (outside) and

action (inside). Only after the body has passed by does the observer become aware of it.
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Figure 2.1.1 Subsonic. sonic, and supersonic flows. (a) Subsonic (v <a, M < 1). (b} S

(u=a. M=1). (¢} Supersonic (u=a. M=1).

The governing equations for subsonic flow, transonic flow, and supersonic flow are classified as
elliptic, parabolic, and hyperbolic, respectively. We shall elaborate on these equations below. Most
of the governing equations in fluiddynamics are second order partial differential equations. For
generality, let us consider the partial differential equation of the form [Sneddon, 1957] in a two-

dimensional domain.

’u u 0*u du Ju .
A 4 b D= Pt P 4= Gom 0 (2.1.1)
”

dx? dxdy  av? dx d

Where the coefficients A, B, C, D, E, and F are constants or may be functions of both independent
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and/ordependent variables. To assure the continuity of the first derivative of u, ux = du/dx and
uy=0du/dy. We write



P v
G IT iy a“u a“u

= 4 —dy = —d> {y 2.1.2a

du ax dx + dy a a2t M :'}x:'i_vI ’ { )
A, Bty u u

= ==l X —_— P = I'.':l" 2-"-21:.

du, X dx + Iy d) Hxﬁ}fdx - 52 ¥ ( )

Here u forms a solution surface above or below the x — v plane and the slope dy/dx
representing the solution surface is defincd as the characteristic curve.
Equations (2.1.1), (2.1.2a). and (2.1.2b) can be combined to form a matrix equation

A B C My H
dx dy 0 Wyy | = | du, (2.1.3)
0 dx dy || uy, du,
where
{ d
H:_(fﬁ+ﬁ,—”+ru+5) (2.1.4)
ax d_"lr'

Since it is possible to have discontinuities in the second order derivatives of the dependent
variable along thecharacteristics, these derivatives are indeterminate.

Figure 2.1.2 Propagation of disturbance and
characteristics. Zone of

Influence

Zone of . _
Dependence S? anal point
disturbance at A

This happens when the determinant of the coefficient matrix in (2.1.3) is equal to zero.



A B C
dx dy 0 |=10 (2.1.5)
0 dx dy

which yields

dy\’ (dv
i =] - - -C =10 1.
‘ (ﬁf:{) d.r) f (2.1.6)

Solving this quadratic equation yields the cquation of the characteristics in physical
space,
dy BB —-4AC

— = 2.1.
idx 2A L.7)

Depending on the value of B2 — 4AC, characteristic curves
can be real or imaginary.

For problems in which real characteristics exist, a disturbance propagates only over a finite region
(Figure 2.1.2). The downstream region affected by this disturbance at point A is called the zone
of influence. A signal at point Awill be felt only if it originates from a finite region called the zone
of dependence of point A.

The second order PDE is classified according to the sign of
the expression ( B2 —4AC).

(a) Elliptic if BZ—4AC<0

In this case, the characteristics do not exist.
(b) Parabolicif BZ—4AC=0

In this case, one set of characteristics exists.
(c) Hyperbolic if B2 - 4AC >0

In this case, two sets of characteristics exist.

Note that (2.1.1) resembles the general expression of a

conic section,AX? + BXY+ CY? + DX+ EY+F =0
(2.1.8)

in which one can identify the following geometrical

properties: B — 4AC < 0 ellipse

B2-4AC=0

parabola B>- 4AC



R-20

> 0 hyperbola
This is the origin of terms used for classification of partial differential equations.



Examples

(a) Elliptic equation
:—:' + % =0 (2.1.9)
A=1, B=0, C=1
B —4AC=-4<0

(b} Parabolic equation
du  u

I_uﬁ =0 (a=0) (2.1.10)
A=—-a, B=0, C=0
B ~4AC =0

(¢c) Hyperbolic equation

1-D First Order Wave Equation

du G
— — =) =
o +|‘1Eu {a =10) (2.1.11)

1-I} Second Order Wave Equation
Diflerentiating (2.1.11) with respect to x and ¢,

au #u

m+am=u (2.1.12a)

#u #u

— — =1 2.1.12b

at T Grax ( '
Combining (2.1.12a) and (2.1.12b) viclds

Fu 8w

o Y ana? =0 {2.1.13)
where

A=1, B=0, C=-a’
B —4AC=44" >0

The Eigen value method, General behavior of different classes of Partial differential equation —
elliptic, parabolicand hyperbolic.
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Defining W as the column vector
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where by definition [N] = [K]™'[M].

If the eigen values are all real, the equations are hyperbolic.
If the eigen values are all complex the equations are elliptic or else they are parabolic.

WELL POSED PROBLEMS

The mathematical term well-posed problem stems from a definition given by Jacques
Hadamard. He believed that mathematical models of physical phenomena should have

the properties that:

1. asolution exists,
2. the solution is unique,

3. the solution's behavior changes continuously with the initial conditions.

If the problem is well-posed, then it stands a good chance of solution on a computer using
a stable algorithm. If it is not well-posed, it needs to be re-formulated for numerical
treatment. Typically thisinvolves including additional assumptions, such as smoothness

of solution.
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UNIT-111 - DISCRETIZATION TECHNIQUES

Introduction, Finite differences
In mathematics, finite-difference methods (FDM) are numerical methods for solving differential

equations by approximating them with difference equations, in which finite differences

approximate the derivatives. FDMs are thus discretization methods.

¥
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J Lkl il il el
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—— L ] -
i-1,7 I J i+l
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Ly

Formulas for first and second derivatives

First, assuming the function whose derivatives are to be approximated is properly-behaved, by
Taylor's theorem,we can create a Taylor series expansion
If uij denotes velocity at point (1,j) then the velocity ui+1,j at point (i+1,j) can be expressed in terms

of Taylor series expanded about point (1,j) as follows:

the Fu\ (A Py (Ax)
o=+ (5), ae(58), 5+ (), 6+
Solving above equation for derivative gives

du Wiy, j— M f Fu\ Ax Fu [“‘U-’]:
Oy A _(F I.JT_(@ L6

L ] | |
Finile-
difference Truncation error
represeniation

i Ui U
o), Ax

The lowest order term in truncation error involves Ax to the first power; hence the finite difference

expression
% _Mivl g T Mg 1
(ﬂl).‘_)‘ ;'FL‘{ + DEMJ

Is called first order accurate and the symbol O(Ax) is a formal mathematical notation which
represents terms of order Ax. The above equation uses information to the right of grid point (i,j)

I.e it uses ui+1j and uij. As a result it is
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First, consider 2 continuous function of x, namely, f(x), with all dervatives
defined at x. Then, the value of fat a location x + Ax can be estimated from a Taylor
series expanded about point x, that s,
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Let us now write a Taylor series expansion for u; - ;, expanded about u; ;.
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solving for (Bu/dy), ;, we obtain
I AR ik BT WP
|_ o), ; Ax -

The above equation uses information to the left of grid point (i,j) i.e it uses ui1j and uij. As a
result it is known asfirst order backward or rearward difference

In most CFD applications first order accuracy is not sufficient second order difference are obtained
by subtract forward and backward differences as follows:
; c a3
HJ'I1.J'_H.I' I.J z(ﬁ) M‘l‘l(t}su) g_ﬂ_;_'l'-l-"'
. y

de ) ; et ),

u .“r'—l.j i1, 2 |

The lowest order term in truncation error involves Ax to the first power; hence the finite difference
expression is of second order. The above equation uses information to the left and right of grid
point (i,j) i.e it uses Ui+1j, Ui-1j and uij. As a result it is known as second order central difference.

Similarly the finite differences for y derivatives are given as
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These are examples of second derivative finite differences are known as second
differences.

For mixed derivatives
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Subtracting above two equations
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This known as second order central difference for mixed derivative.



First-ooder

——— ——— e s e A R S S s AN NS R S RSN S S W —

forward {ﬂ = S W
difference o Ao
with respect

oz

First-order

difference ael, Ax
with respect

[ {5

Second-order

central (E" o M- M
difference 9x 7y 2hx
with respect

o x

. Ax
Ogtr g6
i, J i+l
L
e
i1, f iJj
!
gte L ar g
i1, i+1,f

— —— — — — ey — — — — e E— e m— e e — — — — — —



[P S —————— e R

Second-order & 5
central [:.._"} o Miang - SME WG (+) -2) | (+)
second L TR (Y oy
differrnce i-1.j +J i+l
with respect
ox

— . A e S s S N MM R e m— — — — — — — — — —

H
8
2l

First-order
rearwand { a“] - g ” Mgl (4)] Ay
difference i
with respect *

oy

Second-onder

Fuy g - Juyg oy,
pecomd :a_yﬂi.: ':ay:'t
difference
with respect
toy

— . e — e e S S e .  — — i — — — — —

Secopd-

Eﬁiﬂll {_EEL] _ M b - Mg - Miel g
mined 4wy, 44z Ay

differcnce

with

respect )
tox and v (=) i+l,4-1

i+1, j+1




Difference equations

When all the partial derivatives in agiven PDE are replaced by finite difference the algebraic

equation is known asdifference equation.

Consider a one dimensional heat conduction equation with constant thermal diffusivity

aT ﬂf}”T
ar o

This equation is parabolic in nature. So we use marching solution with respect to time. Here time is

representd byprefix n to grid point.
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The above equation is known as difference equation for one dimensional heat conduction governing
equation.

Explicit and implicit approaches

Consider the same 1D heat conduction equation

Tyl 2T

At (Av)
With some rearrangements of above equation gives
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In the above equation left hand side is unkown and all the right side terms in n level are known by
boundary conditions. Thus by marching in time direction with varying n levels as shown in above
figure the solution is obtained .
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Similarly we can get for T™* T™5 and T"*® . As these equations are solving for only one single
unknown then it is known as explicit method.

For a given PDE we can write n number of difference equations with various methods like the following

The above finite difference method is known as Crank Nicholoson form.

In the above both left and right handside terms are unknowns i.e. n+1 level terms. So to obtain the
solution for a equation with more than one unknown it requires equations equal to number of
unknowns. Thus solving simulkataneous eugtions or unknowns is known as implicit method.
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At grid point 2 : ATy — BT, + AT; = K,

—BT: +A4AT: = K2~ AT

At grid point 3 - ATy — BTy + ATy — K,
Ar grid paint 4 AT; — BT, + AT; = K,
At grid paint 5 ATy — BT + ATy, = K5
Ar grid point 6 ATs — BTy + AT: = Ky

ATs — BTy = K¢ — AT, = K,

Boa_ A~_ 0 0 0] [7T: K
A~_=B~_ A< _ 0 0T K
0 TA<_=Bo_Td._ 0T =K,
0 0 TA.e_ =B _TCA||Ts Ks
0 0 0 T4  TB||T Ki

1. To obtain a steady state solution by means of assuming some arbitrary initial
conditions for a flow field, and then calculating the flow in steps of time, going
out to a sufficiently large number of time steps until a final steady-state flow is
approached at large values of time, in this situation, the hinal steady state 15 the
desired result, and the time marching is simply a means to that end. The solution
to the supersonic blunt body problem 15 a case in point, as discussed in Sec.

Explicit approach

Advantage Relatively simple w set up and program.

Disadvantage In terms of our above example, for a given Ax, Ar must be less
than some limit imposed by stability constraints. In some cases,
A must be very small to maintain stability; this can result in
long computer running times to make calculations over a given
interval of 1.

Implicit approach

Advantage Stability can be maintained over much larger values of Ar, hence

using considerable fewer time steps to make calculations over a
given interval of . This results in less computer time.

Disadvantage More complicated to set up and program.



Disadvantage Since masgive matrix manipulations are ueually required at each
time step, the computer time per time step is much larger than in
the explicit approach.

Disadvantage Since large Ar can be taken, the truncation error is large, and the
use of implicit methods to follow the exact transients (time
variationg of the independent vaniahle) may not he as accurate as

an expheit approach. However, for a time-dependent solution in

which the steady state is the desired result, this relative timewise
inaccuracy 1s not unportant.

Basis of finite volume method-
The finite volume method (FVM) is a method for representing and evaluating partial differential

equations in the form of algebraic equations [LeVeque, 2002; Toro, 1999]. Similar to the finite
difference method or finite element method, values are calculated at discrete places on a meshed
geometry. "Finite volume" refers to the small volume surrounding each node point on a mesh. In
the finite volume method, volume integrals in a partial differential equation that contain a
divergence term are converted to surface integrals, using the divergence theorem. These terms are
then evaluated as fluxes at the surfaces of each finite volume. Because the flux entering a given
volume isidentical to that leaving the adjacent volume, these methods are conservative. Another
advantage of the finite volume method is that it is easily formulated to allow for unstructured
meshes. The method is used in many computational fluid dynamics packages.


https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Divergence
https://en.wikipedia.org/wiki/Surface_integral
https://en.wikipedia.org/wiki/Divergence_theorem
https://en.wikipedia.org/wiki/Conservation_law_(physics)
https://en.wikipedia.org/wiki/Computational_fluid_dynamics
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Finite-VVolume Methods

Finite-volume methods (FVM) — sometimes also called box
methods — are mainly employed for the numerical solution of
problems in fluid mechanics, where they were introduced in the
1970s by McDonald, MacCormack, and Paullay. However, the
application of the FVM is not limited to flow prob- lems. An
important property of finite-volume methods is that the balance
principles, which are the basis for the mathematical modelling of
continuum mechanical problems, per definition, also are fulfilled
for the discrete equations(conservativity). In this chapter we will
discuss the most important basics of finite-volume discretizations
applied to continuum mechanical problems. For clarity in the
presentation of the essential principles we will restrict ourselves
mainly to the two-dimensional case.

4.1 General Methodology

In general, the FVVM involves the following steps:

(1) Decomposition of the problem domain into control volumes.

(2) Formulation of integral balance equations for each control volume.

(3) Approximation of integrals by numerical integration.

(4) Approximation of function values and derivatives by interpolation with
nodal values.

(5) Assembling and solution of discrete algebraic system.

In the following we will outline in detail the individual steps (the
soliition nfalanehraic svstems will he the tonic of Chan 7Y \We
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for some problem domain Q. We remark that a generalization of
the FVM to other types of equations as given in Chap. 2 is
straightforward (in Chap. 10this will be done for the Navier-
Stokes equations).

The starting point for a finite-volume discretization is a
decomposition of the problem domain Q into a finite number of
subdomains Vi (i=1, ..., N), called control volumes (CVs), and
related nodes where the unknown variables are to be computed.
The union of all CVs should cover the whole problem domain.
In general, the CVs also may overlap, but since this results in
un- necessary complications we consider here the non-overlapping
case only. Sincefinally each CV gives one equation for computing
the nodal values, their finalnumber (i.e., after the incorporation of
boundary conditions) should be equal to the number of CVs.
Usually, the CVs and the nodes are defined on the basis of a
numerical grid, which, for instance, is generated with one of the
techniques described in Chap. 3. In order to keep the usual
terminology of the FVM, we always talk of volumes (and their
surfaces), although strictly speaking this is only correct for the
three-dimensional case.

For one-dimensional problems the CVs are subintervals of the
problem interval and the nodes can be the midpoints or the edges
of the subintervals (see Fig. 4.1).

¢ ¢ \ ¢ Fig. 4.1. Definitions of CVs and

- edge (top) and cell-oriented (bot-

+ cv Nodes tom) arrangement of nodes for
—eo——e—|—e—| one-dimensional grids

In the two-dimensional case, in principle, the CVs can be
arbitrary poly-gons. For quadrilateral grids the CVs usually are
chosen identically with thegrid cells. The nodes can be defined
as the vertices or the centers of the CVs(see Fig. 4.2), often called
edge or cell-centered approaches, respectively. For triangular grids,
in principle, one could do it similarily, i.e., the triangles define the
CVs and the nodes can be the vertices or the centers of the triangles.
How- ever, in this case other CV definitions are usually
emploved. One approach is closely related to the Delaunay



as Voronoi polygons andin the case of convex problems domains
and non-obtuse triangles there is a one-to-one correspondance to a
Delaunay triangulation with its “nice” prop- erties. However, this
approach may fail for arbitrary triangulations. Another more
general approach is to define a polygonal CV by joining the
centroids and the midpoints of the edges of the triangles
surrounding a node leading to the so-called Donald polygons (see
Fig. 4.4).



Node

cv

Fig. 4.3. Definition of CVs and nodes for
tri-angular grids with Voronoi polygons

Node

cv

Fig. 4.4. Definition of CVs and nodes for
tri-angular grids with Donald polygons

For three-dimensional problems on the basis of hexahedral or
tetrahedral grids similar techniques as in the two-dimensional case
can be applied (see, e.g., [26]).

After having defined the CVs, the balance equations describing
the prob- lem are formulated in integral form for each CV.
Normally, these equations are directly available from the
corresponding continuum mechanical conservationlaws (applied to
a CV), but they can also be derived by integration from the
corresponding differential equations. By integration of (4.1) over
an arbitrary control volume V and application of the Gaul? integral
theorem, one obtains:

) o f



fdv , (4.2)

Fig. 4.2. Edge-oriented
(left) and cell-oriented
(right) arrangements of
nodes for quadrilateral grids
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where S is the surface of the CV and n; are the components of
the unit normal vector to the surface. The integral balance equation
(4.2) constitutes the starting point for the further discretization of
the considered problem withan FVM.

As an example we consider quadrilateral CVs with a cell-
oriented arrange- ment of nodes (a generalization to arbitrary
polygons poses no principal dif- ficulties). For a general
quadrilateral CV we use the notations of the distin- guished points
(midpoint, midpoints of faces, and edge points) and the unit normal
vectors according to the so-called compass notation as indicated
inFig. 4.5. The midpoints of the directly neighboring CVs we
denote — again in compass notation — with capital letters S, SE,
etc. (see Fig. 4.6).

N2, V

Fig. 4.5. Quadrilateral control
2 volume with notations

% Fig. 4.6. Notations for neighbor-

ing control volumes

The surface integral in (4.2) can be split into the sum of the
four surfaceintegrals over the cell faces Sc (¢ = e, w, n, s) of the
CV, such that the balance equation (4.2) can be written



equivalently in the form

Zf dp J
PV — Oz negdS. = fdV. (4.3)

i
Sec Vv
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The expression (4.3) represents a balance equation for the
convective anddiffusive fluxes F ¢ and FP through the CV faces,
respectively, V\c/ith

FC= (pwo)n dS and FP= a2 n ds .

c i ci c ct c
¢ Ox;

Se Se

For the face Se, for instance, the unit normal vector ne = (Nex,
Ne2) is definedby the following (geometric) conditions:

(Xne — Xse)  Ne =0 und Ny +Ng, = 1.
Ine| =

From this one obtains the representation

Ne = (Yne — Yse) e — (Xne = Xse) e, (4.4)
5Se 5Se
wher

N
0Se = |Xne — Xse| = (Xne — Xse)2 + (yne — yse)2

denotes the length of the face Se. Analogous relations result for the

other CVfaces.
For neighboring CVs with a common face the absolute value of

HH%ZEEO%FC + F D through this face is identical, but the sign

instance, for the CV around point P the flux Fe is equal to the
flux Fw

for the CV around point E (sinee (ne)r = (nw)e). This is
exploited for the implementation of the method in order to avoid
on the one hand a double com- putation for the fluxes and on the
other hand to ensure that the correspondingabsolute fluxes really
are equal (important for conservativity, see Sect. 8.1.4). In the case
of quadrilateral CVs the computation can be organized in such a
way that, starting from a CV face at the boundary of the problem



the surface integrals and the vol- ume integral in (4.3) by suitable
averages of the corresponding integrands at the CV faces.
Afterwards, these have to be put into proper relation to the
unknown function values in the nodes.

4.2 Approximation of Surface and Volume Integrals

We start with the approximation of the surface integrals in (4.3),
which for a cell-centered variable arrangement suitably is carried
out in two steps:

(1) Approximation of the surface integrals (fluxes) by values on the CV faces.
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(2) Approximation of the variable values at the CV faces by node values.

As an example let us consider the approximation of the surface
integral
J
Wilei dSe

Se

over the face Se of a CV for a general integrand function w =
(w1(x), wz(x)) (the other faces can be treated in a completely
analogous way).

The integral can be approximated in different ways by
involving more orless values of the integrand at the CV face.
The simplest possibility is an approximation by just using the
midpoint of the face:

S

WiNe; dSe = Oe OSe , (4-5)
Se

where we denote with ge = Weine: the normal component of w at
the loca- tion e. With this, one obtains an approximation of 2nd
order (with respect to the face length 6Se) for the surface integral,
which can be checked by meansof a Taylor series expansion
(Exercise 4.1). The integration formula (4.5) cor-responds to the
midpoint rule known from numerical integration.

Other common integration formulas, that can be employed for
such ap- proximations are, for instance, the trapezoidal rule and the
Simpson rule. The corresponding formulas are summarized in
Table 4.1 with their respective orders (with respect to JSe).

Table 4.1. Approximations for surface integrals
over the face Se

Name Formula Order
Midpoint rule 6Sege 2
Trapezoidal rule  8Se(gne + gse)/2 2
Simpson rule 8Se(Gne + 4ge + gse)/6 4

For instance, by applying the midpoint rule for the
approximation of the convective and diffusive fluxes through the
CV faces in (4.3), we obtain the approximations:

a
FC ~ pvinedSepe  and FP ~ —anedSe 22



mec oxi . '

where, for simplicity, we have assumed that vi, p, and « are
constant acrossthe CV. m ¢ denotes the mass flux through the face
Sc. Inserting the definition
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of the normal vector, we obtain, for instance, for the convective
flux throughthe face Se, the approximation

FeC ~ Mepe = P[Vl(yne - yse) - Vz(xne - Xse)] .

Before we turn to the further discretization of the fluxes, we
first deal with the approximation of the volume integral in (4.3),
which normally also is carried out by means of numerical
integration. The assumption that the value fe of f in the CV center
represents an average value over the CV leads to the two-
dimensional midpoint rule:

fdv =fpol,
v

where oV denotes the volume of the CV, which for a
quadrilateral (iV is givenby

5V = E |(Xse - an)(yne - ysw) - (Xne - Xsw)(yse - an)| .

An overview of the most common two-dimensional integration
formulas for Cartesian CVs with the corresponding error order
(with respect to 6/7) is given in Fig. 4.7 showing a schematical
representation with the corresponding location of integration points
and weighting factors. As a formula this means, e.g., in the case of
the Simpson rule, an approximation of the form:

fdv ~ o glpfs + 4fe + 4fw + 4fn + 4fs + fne + fse + fne
v 36

It should be noted that the formulas for the two-dimensional
numerical inte- gration can be used to approximate the surface
integrals occurring in three- dimensional applications. For three-
dimensional volume integrals analogous integration formulas as
for the two-dimensional case are available.

In summary, by applying the midpoint rule (to which we will
retrict ourselves) we now have the following approximation for the
balance equa- tion (4.3):

=. =

0
Mepe — Qi OSe 4067 = fpoV. (4.6)
i c
e —X ¢ X =X
conv. diff. source

fluxes fluxes



In the next step it is necessary to approximate the function values
and deriva- tives of ¢ at the CV faces occurring in the convective
and diffusive flux ex- pressions, respectively, by variable values
in the nodes (here the CV centers). In order to clearly outline the
essential principles, we will first explain the corresponding
approaches for a two-dimensional Cartesian CV as indicated in
Fig. 4.8. In this case the unit normal vectors nc along the CV
faces are givenby



Fig. 4.7. Schematic representation of numerical integration formulas for two-
dimensional volume integrals over a Cartesian CV

Ne=€1, lw= —€1, Nn=6€2, Ns = —€2

and the expressions for the mass fluxes through the CV faces
simplify to
Me = pvi(Yn —Ys) Mn = pra(Xe = Xw),

y Mw = pva(ys - Ms = pva(Xw — Xe) .
yn),

Particularities that arise due to non-Cartesian grids will be
considered in Sect. 4.5.

4.3 Discretization of Convective Fluxes

For the further approximation of the convective fluxes FC, it is



where we can restrict ourselves to one-dimensional considera-
tions for the face Se, since the other faces and the second (or
third) spatial dimension can be treated in a fully analogous way.
Traditionally, the corre- sponding approximations are called
differencing techniques, since they result



in formulas analogous to finite-difference methods. Strictly
speaking, these areinterpolation techniques.

4.3.1 Central Differences

For the central differencing scheme (CDS) ¢. is approximated by linear inter-
polation with the values in the neighboring nodes P und E (see Fig. 4.9):

Pe = yepr + (1 — ye)prp . (4.7)
The interpolation factor ye is defined by

_ Xe — Xp
Ye = .
XE — Xp
The approximation (4.7) has, for an equidistant grid as well as for
a non- equidistant grid, an interpolation error of 2nd order. This can

be seen from a Taylor series expansion of ¢ around the point x:

L (x=xe)P &

+ Ty,
ax p 2 2 o,

p(X) = gp + (X —
XP)

where Tu denotes the terms of higher order. Evaluating this
series at thelocations xe and xe and taking the difference leads to
the relation

(X = xp)(xe — o’
ve = yepr + (L= ye)op — - el 0@
ox? p




which shows that the leading error term depends quadratically on

the*gridspacing™ [~
Vn T ¥ 'n *'
OSn s
W P
+ 5Sw L 55—
w e
F1 o ss—%
Vs *
S
a1, X
Xw ns Xe * Fig. 4.8. Cartesian control volume
23 with notations
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Fig. 4.9. Approximation of ¢e
with CDS method

By involving additional grid points, central differencing
schemes of higher order can be defined. For instance, an
approximation of 4th order for an equidistant grid is given by

1
Pe =g (—3¢EE + 27¢9E + 27¢p — 3pw),

where EE denotes the “east” neighboring point of E (see Fig.
4.11). Note thatan application of this formula only makes sense
if itis used together with anintegration formula of 4th order, e.g.,
the Simpson rule. Only in this case isthe total approximation of
the convective flux also of 4th order.

When using central differencing approximations unphysical
oscillations may appear in the numerical solution (the reasons for
this problem will be discussed in detail in Sect. 8.1). Therefore, one
often uses so-called upwind approximations, which are not
sensitive or less sensitive to this problem. The principal idea of
these methods is to make the interpolation dependent on the
direction of the velocity vector. Doing so, one exploits the transport
property of convection processes, which means that the convective
transport of ¢ only takes place “downstream”. In the following we
will discuss two of the most important upwind techniques.

4.3.2 Upwind Techniques

The simplest upwind method results if ¢ is approximated by a step
function. Here, ge is determined depending on the direction of the
mass flux as follows (see Fig. 4.10):



-

if Me=0,

e = QP ,
¢ ¢ me <<0.

@e = @E, If

I'his meltlled upwind differencing scheme (UDS). A Taylor series
xpansion of ¢ around pQint xp, evaluated at the point xe, gives:
|

I
I
|
o . ®
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4.3 Discretization of Convective Fluxes 87
0 L (Xe—Xxp)2 09

= + (Xe — X J— - 27
ve = gp + (Xe 2 ox p 2 Ox?

+TH.
P

This shows that the UDS method (independent of the grid) has
an interpola-tion error of 1st order. The leading error term in the
resulting approximationof the convective flux F ¢ becomes

m (x x 6_(/) )
ox p

e

\
— (5
X

Onum

The error caused by this is called artificial or numerical
diffusion, since the error term can be interpreted as a diffusive
flux. The coefficient anum IS a measure for the amount of the
numerical diffusion. If the transport direction is nearly
perpendicular to the CV face, the approximation of the
convectivefluxes resulting with the UDS method is comparably
good (the derivative (0@/0x)p is then small). Otherwise the
approximation can be quite inaccurate and for large mass fluxes
(i.e., large velocities) it can then be necessary to employ very
fine grids (i.e., Xe xp very small) for the computation in order to
achieve a solution with an adequate accuracy. The disadvantage
of the relatively poor accuracy is confronted by the advantage that
the UDS method leads to an unconditionally bounded solution
algorithm. We will discuss this aspect in more detail in Sect.
8.1.5.

Fig. 4.10. Mass flux dependent
approximation of ¢. with UDS
method




An upwind approximation frequently employed in practice is the
quadraticupwind interpolation, which in the literature is known
as the QUICK method (Quadratic Upwind Interpolation for
Convective Kinematics). Here, a quad-ratic polynomial is fitted
through the two neighboring points P and E, and athird point,
which is located upstream (W or EE depending on the flow direc-
tion). Evaluating this polynomial at point e one obtains the
approximation (see also Fig. 4.11):
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i Me<<0,
wher
e Qe = b1¢P - b2(ﬁEE + (l — b+ b2)(0E )
i
f
2= @7 a L= 79 -
BN - yo)2 yw)2 1+ ye —
Vy '
b — , b2 — Veeye .
! 1+ pee — ye 1+ yee — ye
For an equidistant grid one has:
3 . 1 b 3 b = 1
a; = 3 A2 1: 1 — o — — .
8 g 8 8

In this case the QUICK method possesses an interpolation
error of 3rd or-der. However, if it is used together with numerical
integration of only 2nd orderthe overall flux approximation also
is only of 2nd order, but it is somewhat more accurate than with
the CDS method.

|

|

|

|

|

|

|

@
w P e
Fig. 4.11. Mass flux dependent approximation of g with QUICK method

Before we turn to the discretization of the diffusive fluxes. we



The principal idea of flux-blending, which goes back to Khosla und
Rubin(1974), is to mix different approximations for the convective
flux. In this way one attempts to combine the advantages of an
accurate approximation of a higher order scheme with the better
robustness and boundedness properties of a lower order scheme
(mostly the UDS method).

To explain the method we again consider exemplarily the face
Se of a CV. The corresponding approximations for e in the
convective flux FC for the
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Rmc_) (%e%}hods to be combined are denoted by oML and ¢MH, where

MH are the lower and higher order methéds, respgctively. The
approximation
for the combined method reads:

ge = (1 = P)pML + BpMH = oML + B(pMH — pML) (4.8)

X

by

From (4.8) for § = 0 and § = 1 the methods ML and MH,
respectively, result. However, it is possible to choose for g any
other value between 0 and 1, allowing to control the portions of the
corresponding methods according to the needs of the underlying
problem. However, due to the loss in accuracy, values g < 1 should
be selected only if with # = 1 on the given grid no “reasonable”
solution can be obtained (see Sect. 8.1.5) and a finer grid is not
possible due to limitations in memory or computing time.

Also, if = 1 (i.e., the higher order method) is employed, it can
be be- neficial to use the splitting according to (4.8) in order to treat
the term be-e “explicitly” in combination with an iterative solver.
This means that this term is computed with (known) values of ¢
from the preceding iteration and added to the source term. This may
lead to a more stable iterative solution procedure, since this
(probably critical) term then makes no contribution to the system
matrix, which becomes more diagonally dominant. It should be
pointed out that this modification has no influence on the
converged solution, which is identical to that obtained with the
higher order method MH alone. We will discuss this approach in
some more detail at the end of Sect. 7.1.4.

4.4 Discretization of Diffusive Fluxes

For the approximation of diffusive fluxes it is necessary to
approximate the values of the normal derivative of ¢ at the CV
faces by nodal values in theCV centers. For the east face Se of the
CV, which we will again consider exemplarily, one has to
approximate (in the Cartesian case) the derivative (0¢p/0Ox)e. For
this, difference formulas as they are common in the framework of
the finite-difference method can be used (see, e.g., [9]).
The simplest approximation one obtains when using a central
differencing formula
Ox

e

o



YE — ¢p ’ ~ 49)

( XE — Xp

which is equivalent to the assumption that ¢ is a linear function
between the points xp and xe (see Fig. 4.12). For the discussion
of the error of this ap- proximation, we consider the difference of
the Taylor series expansion aroundxe at the locations xp and Xg:
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09  _9E—@p  (Xe —Xp)2 — (XE —Xe)®2 0@
OX o Xg—Xp 2(XE — Xp) ox*
(Xe — XP)3 + (XE — ¢
- Xe)3 o3 L+ Ty,
6(XE — Xp)

One can observe that for an equidistant grid an error of 2nd order
results, since in this case the coefficient in front of the second
derivative is zero. Inthe case of non-equidistant grids, one obtains
by a simple algebraic rearrange-ment that this leading error term is
proportional to the grid spacing and the expansion rate & of
neighboring grid spacings:

(L-&)X —Xp) 09 2 X —X

with &= £ ¢,
e Xe — Xp

2 ox?

This means that the portion of the 1st order error term gets larger
the more the expansion rate deviates from 1. This aspect should be
taken into account in the grid generation such that neighboring
CVs do not differ that much inthe corresponding dimensions (see
also Sect. 8.3).

o

I

I I

I I

[ [

| | Fig. 4.12. Central differencing
o ® ® S formula for approximation of 1st
P

derivative at CV face

One obtains a 4th order approximation of the derivative at

the CV facefor an equidistant grid by
Oox

e

Op



1 e (pw — 279p + 279E — @EE) , (4.10)

which, for instance, can be used together with the Simpson rule to
obtain an overall approximation for the diffusive flux of 4th order.
Although principally there are also other possibilities for
approximating the derivatives (e.g., forward or backward
differencing formulas), in practice almost only central differencing
formulas are employed, which possess the best accuracy for a given
number of grid points involved in the discretization. Problems with
boundedness, as for the convective fluxes, do not exist. Thus,
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there is no reason to use less accurate approximations. For CVs
located at the boundary of the problem domain, it might be
necessary to employ forward or backward differencing formulas
because there are no grid points beyond the boundary (see Sect.
4.7).

4.5 Non-Cartesian Grids

The previous considerations with respect to the discretization of the
convective and diffusive fluxes were confined to the case of
Cartesian grids. In this section we will discuss necessary
modifications for general (quadrilateral) CVs.

For the convective fluxes, simple generalizations of the schemes
introducedin Sect. 4.3 (e.g., UDS, CDS, QUICK, . . . ) can be
employed for the approxi- mation of ¢c. For instance, a
corresponding CDS approximation for e reads:

-4 X
e o Py 4 XE- (4.11)
~Ixe — xp| Xz| 0
|XE —
Xp|

where X-e is the intersection of the connnecting line of the points P
and E with the (probably extended) CV face Se (see Fig. 4.13).
For the convective flux through Se this results in the following
approximation:

FeCN (lxé_XP|¢E+‘XE _Xé‘(pP)'

IXE — Xp|
When the grid at the corresponding face has a “kink”, an additional
error results because the points x-e and xe do not coincide (see Fig.

4.13). This aspect should be taken into account for the grid
generation (see also Sect. 8.3).

- N



imation of convective fluxes for non-
Cartesian control volumes

Let us turn to the approximation of the diffusive fluxes, for
which farther reaching distinctions to the Cartesian case arise as for
the convective fluxes. Here, for the required approximation of the
normal derivative of ¢ in the center of the CV face there are a
variety of different possibilities, dependingon the directions in
which the derivative is approximated, the locations where the
appearing derivatives are evaluated, and the node values which are
used
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for the interpolation. As an example we will give here one variant
and consideronly the CV face Se.

Since along the normal direction in general there are no nodal
points, the normal derivative has to be expressed by derivatives
along other suitable directions. For this we use here the
coordinates & and 7 defined according
to Fig. 4.14. The direction & is determined by the connecting line
between

points P and E, and the direction 7 is determined by the direction
of the CV face. Note that & and #, because of a distortion of the
grid, can deviate from the directions & und #, which are defined
by the connecting lines of P with

the CV face centers e and n. The larger these deviations are, the
larger the discretization error becomes. This is another aspect that
has to be taken into account when generating the grid (see also
Sect. 8.3).

Fig. 4.14. Approximation of dif-
fusive fluxes for non-Cartesian con-
trol volumes

A coordinate transformation (x;y) (& #) results for the
normal deriva- tive in the following representation:

op op 1 oy Ox Op Ox oy op
—Neit—Ne2 = _nNgg— —Ney —+ —pn. - — — (412
ox oy o oot & oc " gg e o §
Jd
with the Jacobi determinant
Ox oy Oy ox

\J =_~_ T~ .
ocon  o& o
The metric quantities can be approximated according to



oX . Xne — Xse (4 13)

& Ixg — xpl on JSe

which results for the Jacobi determinant in the approximation

Jeg _(XE - XP)(!ne _ !se) _ (VE _ VP)(Xne _ X&)_ = cos v,
|XE — XP| 5Se
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where  denotes the angle between the direction ¢ and ne (see Fig.
4.14). w is a measure for the deviation of the grid from
orthogonality (v = 0 for an orthogonal grid).
The derivatives with respect to & and 7 in (4.12) can be
approximated
in the usual way with a finite-difference formula. For example, the
use of a central difference of 2nd order gives:

Op __ o —gp and 02 o fne=Ose (4.14)
o0& |XE — on 5Se
Xp|

Inserting the approximations (4.13) and (4.14) into (4.12) and using
the com- ponent representation (4.4) of the unit normal vector ne
we finally obtain the following approximation for the diffusive
flux through the CV face Se:

FeP = De(@E — @p) + Ne(¢ne — ¢se) (4.15)

wit
h

2 2

0 (Yne — Yse) + (Xne — Xse)
(Xne — Xse)(YE — YP) — (Yne — Yse)(XE — Xp)

D, =
(4.16)

N. = &[(.m;y@_(ﬁ;yP) + (Xne — qu)(XE - Xﬁl
e — .

)(Yne - YSe)(XE - XP) - (Xne - Xse)(yE - yP)

(4.17

The coefficient Ne represents the portion that arise due to the
non-orthogo-nality of the grid. If the grid s orthogonal, ne
and Xe xp have the
samedirection such that Ne = 0. The coefficient Ne (and the
corresponding valuesfor the other CV faces) should be kept as
small as possible (see als Sect. 8.3).

The values for gne and gse in (4.15) can be approximated, for
instance, bylinear interpolation of four neighboring nodal values:

YP@P t+ YEQE + YNON + PNEQNE
(Dnn =




Fig. 4.15. Interpolation of values in CV
edges for discretization of diffusive fluxes
for non-Cartesian CV
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4.6 Discrete Transport Equation

Let us now return to our example of the general two-dimensional
transport equation (4.3) and apply the approximation techniques
introduced in the pre- ceding sections to it.

We employ exemplarily the midpoint rule for the integral
approximations, the UDS method for the convective flux, and the
CDS method for the diffusive flux. Additionally, we assume that
we have velocity components vy, v > 0Oand that the grid is a
Cartesian one. With these assumptions one obtains thefollowing
approximation of the balance equation (4.3):

QE — QP

pvige — a (Yn = ¥s)
XE — Xp
— prigw — " (yy —y)
Xp - Xw
+ pagr — P (xe = xw)
YN —Yp
pvaps _ . (Xe = Xw) = fe(yn — Ys)(Xe — Xw) .
Yp —Ys

A simple rearrangement gives a relation of the form

arppr = aE@E + awpw + angN + asgs + bp

4.1
8)with the coefficients
(¢4

Y P TR
aw=_"" 4 ¢

Xe ™ Xw  (xp — Xw)(Xe — Xw)
aN = a ,

N YP)(n Vs
as = pYve + ¢ ,

Yo —Ys  (Yp — Ys)(Yn — ¥s)
ap = PV1 OC(XE — Xw)

Xe — Xw (XP - XW)(XE - XP)(Xe - Xw)

PVa bp =fp.
yn - ys




a(yn —Ys) (yp — ys)(yx — Yp)(Yn — Ys)

If the grid is equidistant in each spatial direction (with grid
spacings Ax and
Ay), the coefficients become:

o pV1 o a pPVa o
ag=——, aw=—+-—, an=——,, as= +— _,
BT AN WTAY  Ax? N Ay? S Ay A2

Vi 200 pva 20
ap = bP = fP .

_—t— +—
Ax Ax2 Ay Ay?
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In this particular case (4.18) coincides with a discretization that
would result from a corresponding finite-difference method (for
general grids this normallyis not the case).

It can be seen that — independent from the grid employed —
one has forthe coefficients in (4.18) the relation

ap —ag +aw +an + as.

This is characteristic for finite-volume discretizations and
expresses the con- servativity of the method. We will return to
this important property inSect. 8.1.4.

Equation (4.18) is valid in this form for all CVs, which are
not locatedat the boundary of the problem domain. For boundary
CVs the approxima-tion (4.18) includes nodal values outside the
problem domain, such that they require a special treatment
depending on the given type of boundary condi- tion.

4.7 Treatment of Boundary Conditions

We consider the three boundary condition types that most
frequently oc-cur for the considered type of problems (see Chap.
2): a prescibed variable value, a prescibed flux, and a symmetry
boundary. For an explanation of the implementation of such
conditions into a finite-volume method, we consider as an example
a Cartesian CV at the west boundary (see Fig. 4.16) for the
transport equation (4.3). Correspondingly modified approaches for
the non- Cartesian case or for other types of equations can be
formulated analogously (for this see also Sect. 10.4).

Let us start with the case of a prescribed boundary value gw
= ¢°. For the convective flux at the boundary one has the
approximation:

FS = Mwpw = Mwe° .

With this the approximationvof F € is known (the mass flux m w
at the bound- ary is also known) and can simply be introduced in
the balance equation (4.6). This results in an additional
contribution to the source term bp.

The diffusive flux through the boundary is determined with the
same ap- proach as in the interior of the domain (see (4.18)).
Analogously to (4.9) the derivative at the boundary can be
approximated as follows: 0



- Pw or — @

fali) op

I SV (4.19)

This corresponds to a forward difference formula of 1st order. Of
course, itis also possible to apply more elaborate formulas of higher
order. However, sincethe distance between the boundary point w
and the point P is smaller than
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the distance between two inner points (half as much for an
equidistant grid, see Fig. 4.16), a lower order approximation at the
boundary usually does not influence the overall accuracy that
much.

o °
Fig. 4.16. Cartesian boundary CV at west
o boundarywith notations

In summary, one has for the considered boundary CV a
relation of theform (4.18) with the modified coefficients:

aw =0,
PV1 OC(XE - Xw)
Xe — Xw (XP - XW)(XE - XP)(Xe - Xw)

ap =

pva (YN — Ys)
Yo ¥ (yp — ys)(yN — Yp)(Yn — Vs)
bp = fp P + “ o,
+ Xe — Xw (XP - Xw)(xe - Xw)

All other coefficients are computed as for a CV in the interior of
the problemdomain.

Let us now consider the case where the flux Fw= F©° is
prescribed atthe west boundary. The flux through the CV face is
obtained by dividing F © through the length of the face Xe Xw. The
resulting value is introduced in (4.6) as total flux and the modified
coefficients for the boundary CV become:

aw =0,
a

ap = P+ +
Xe = Xw (X — Xp)(Xe — Xw)

ﬂ__ bP:fP+
yn_ys



+ a(yn — Ys) ’
O(yP = Ys)(yn — Yp)(Yn — ¥s)

F
Xe — Xw
All other coefficients remain unchanged.
Sometimes it is possible to exploit symmetries of a problem
in order todownsize the problem domain to save computing time or
get a higher accuracy
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(with a finer grid) with the same computational effort. In such
cases one hasto consider symmetry planes or symmetry lines at the
corresponding problem boundary. In this case one has the
boundary condition:
op
Oxi

n=0. (4.20)

From this condition it follows that the diffusive flux through the
symmetry boundary is zero (see (4.18)). Since also the normal
component of the velocity vector has to be zero at a symmetry
boundary (i.e., vini = 0), the mass flux and, therefore, the
convective flux through the boundary is zero. Thus, in the balance
equation (4.6) the total flux through the corresponding CV face
canbe set to zero. For the boundary CV in Fig. 4.16 this results
in the following modified coefficients:

aw = 0,
ap = PV -+ -+

Xe — Xw (XE - XP)(Xe - XW)
pva a(yn —Ys) .
Yo =V¥s  (yp — ys)(YNn — Yr)(Yn — ¥s)

If required, the (unknown) variable value at the boundary can be
determined by a finite-difference approximation of the boundary
condition (4.20). In the considered case, for instance, with a
forward difference formula (cp. (4.19)) one simply obtains ¢gw =
@P.
As with all other discretization techniques, the algebraic system
of equa- tions resulting from a finite-volume discretization has a
unique solution onlyif the boundary conditions at all boundaries of
the problem domain are taken into account (e.g., as outlined above).
Otherwise there would be more un- knowns than equations.

4.8 Algebraic System of Equations

As exemplarily outlined in Sect. 4.6 for the general scalar transport
equation, a finite-volume discretization for each CV results in an
algebraic equation ofthe form:
>
arpp — AcPe = bp,

C



where the index c¢ runs over all neighboring points that are
involved in the approximation as a result of the discretization
scheme employed. Globally, i.e.,for all control volumes Vi (i =1, .
.., N) of the problem domain, this gives a linear system of N
equations



AERONAUTICAL ENGINEERING MRCET (UGC

Autonomous)
98 4 Finite-Volume Methods . . .
algl — alpi =b! forall i=1,..., N (4.21)
P P c c P

c

for the N unknown nodal p in the CV centers.
values ¢!

After introducing a corresponding numbering of the CVs (or
nodal values), in the case of a Cartesian grid the system (4.21) has
a fully analogous structurethat also would result from a finite-
difference approximation. To illustratethis, we consider first the
one-dimensional case. Let the problem domain be the interval [0,
L], which we divide into N not necessarily equidistant CVs
(subintervals) (see Fig 4.17).

1 i—1 i "
@ @ 9 P 2
- p P P p P -
O e | I e | & | | I & (O3 x
0 W w P e E L

Fig. 4.17. Arrangement of CVs and nodes for 1-D transport problem

Using the second-order central differencing scheme, the discrete
equationshave the form:
af;goi')—a.(p.—a.(pi =bt. (4.22)

i1 i
E E w W P

With the usual lexicographical numbering of the nodal values
as given inFig. 4.17 one has:

oy =5t forall i=2,...,N,
k=L foralli=1,...,N —1.

Thus, the result is a linear system of equations which can be
represented inmatrix form as follows:

! g
ab —ag vr
2 2 2 . b |2
| P
_aW aP _aE O i—1
Yp

—ayap —ag op ='bp!.



el Ay o x b

[ \A4

A ® b

When using a QUICK discretization or a central differencing
scheme of4th order, there are also coefficients for the farther
points EE and WW (seeFig. 4.18):
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appp — AEEYEE — AEPE — awPw — awwoww = Dp , (4.23)

i.e., in the corresponding coefficient matrix A two additional non-
zero diago-nals appear:

1 1 1
ap —ag —agg
2 2 2 2
—aw dp —ag —agg 0
3 3 3 3 3
a _a a - a _
i i i i i
A= —aww —aw dp —ag —agg
N-2
_ |
agg,
0 N-1
-a
E
N N N
—aww —aw ap
i—2 i—1 i i+1 i+2
op op op P P
[ [4
+—@ t L 4 —@ —@ —@ t
WwWw W w P e E EE

Fig. 4.18. CV dependencies with higher order scheme for 1-D transport problem

For the two- and three-dimensional cases fully analogous
considerations can be made for the assembly of the discrete
equation systems. For a two- dimefsional rectangular domain
with N M CVs (see Fig. 4.19), we have, for instance, in the
case of the discretization given in Sect. 4.6 equations ofthe form

i i aig dd At dd  ald i aid, i — wid
I &0 — ayew— ages — azgN= b

fori=1,...,Nandj=1,..., M. Inthe case of a lexicographical
columnwise numbering of the nodal values (index j is counted up
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ap —ay - 0 - -agt
1,2
-a . . . 9
0
N-1,M
A= L, —ag
_aw
0
N,M—‘l
0 + —a
N,M N,M N,M
—ay 0 - -ag ap
M+1 I—o O—I
M [ . . . *
i,j+1
° ° Pry ° .
i—1,j i,j i+1,]
J . PPy Prey Prg .
i,j—1
. . 5 . .
1 . . ° . . Fig. 4.19. Arrangement
0 of CVs and nodes for 2-D
T i e N transport problem

As outlined in Sect. 4.5, due to the discretization of the
diffusive fluxes, inthe non-Cartesian case additional coefficients
can arise, whereby the number of non-zero diagonals in the system
matrix increases. Using the discretization exemplarily given in
Sect. 4.5, for instance, one would have additional depen- dencies
with the points NE, NW, SE, and SW, which are required to



4.9 Numerical Example

As a concrete, simple (two-dimensional) example for the
application of the FVM, we consider the computation of the heat
transfer in a trapezoidal plate (density p, heat conductivity x) with
a constant heat source q all over the
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= Fig. 4.20. Interpolation of vertice

values for non-Cartesian CV

plate. At three sides the temperature T is prescribed and at the
fourth sidethe heat flux is given (equal to zero). The problem
data are summarized inFig. 4.21. The problem is described by the
heat conduction equation

T oo
K = g (4.24)

with the boundary conditions as indicated in Fig. 4.21 (cp. Sect.
2.3.2). For the discretization we employ a grid with only two CVs
as illustrated in Fig. 4.22. The required coordinates for the
distinguished points for both CVs are indi-cated in Table 4.2.

),
o
o =%+ Ls =
6
5 _
T:_yS p—lkg/mS
16 q=28
P\hlll’bll'\u 2"
+ x=2N/Ks *F o X
f.\
L, =12

Fig. 4.21. Configuration of trapezoidal plate heat conduction example (temperature
in K, length in m)

The integration of (4.24) over a control volume V and the
application ofthe GauB integral theorem gives:



oT oT s

—Ni+ N> (S, = av,
Ox ' Oy : q
v
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S
CV1l\ CV2
0 °
1 Fig. 4.22. CV definition for

b trapezoidalplate

Table 4.2. Coordinates of distin-
guished points for discretized trape-

zoidal plate
Ccvi Ccv2

Point X y X y
P 13/4 2 31/4 2
e 11/2 2 10 2
w 1 2 11/2 2
n 7/2 4 13/2 4
S 3 0 9 0
nw 2 4 5 4
ne 5 4 8 4
se 6 0 12 0
SwW 0 0 6 0
Volume 18 18

where the summation has to be carried out over ¢ =s, n, w, e. For the
ap- proximation of the integrals we employ the midpoint rule and
the derivatives at CV faces are approximated by second-order
central differences. Thus, the approximations of the fluxes for
CV1is:

J 4 oT 1 or
Fe = —K \/_ + \/_ dSe ~

< 17 ox 17 oy
‘ 17
~ De(TE — TP) + Ne(Tne — Tse) = —9 (Te — Tp) — 10,
2 0T 1 0T
Fw=—x _\/5 Ox N \/5 Oy dSw =

2120, 115,
__ i L~ * ds, =60,
KS V?lGX +WL5
I or 16Y
oT



Fs

Tp —Ts
Yp — Ys

a (Xse - Xsw) ~
dSs ~ —K 8)/ s

(Xse - Xsw) =6Tp,
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Fon=—x —dSh = -k (Xne - an) ~
S 5)/ 8)/ n
In—=T
~ -k £ (Xne — Xnw) = 3Tp — 60.
YN —Yp

The flux Fw has been computed exactly from the given boundary
value func-tion. Similarly, one obtains for CV2:

17
Fe=0, FW%—g(TP—Tw)+1O, Fs = 6Tp, Fn~=3Tp—060.

For both CVs we have 6V = 18, such that the following

discrete balanceequations result:
98 17 . 98 17 _
9_TP_—;I|_E—154an @TP gTW—:|.94.
9 -

We have Tp = Tiand Te = T=for CV1,and Tp = Tz and Tw =
T, for CVV2. This gives the linear system of equations

98T, — 17T> = 1386 and98T. — 17T, = 1746

for the two unknown temperatures T: and To. Its solution gives T:
~ 17,77 and T2 = 20, 90.

Exercises for Chap. 4

Exercise 4.1. Determine the leading error terms for the one-
dimensional midpoint and trapezoidal rules by Taylor series
expansion and compare the results.

Exercise 4.2. Let the concentration of a pollutant ¢ = ¢(x) in a
chimney be described by the differential equation

-3¢ —2¢p" =xcos(zx) for 0<x<6

with the boundary conditions ¢'(0) = 1 and ¢(6) = 2. Compute the
values @1 and ¢- in the centers of the two control volumes CV1 =



finite-volume method for the two grids illustarted in Fig. 4.24.
Compare the results with the analytic solution Ta(X,y) = 20 — 2y

+Xy—Xy.
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t.
sk
+ 2m i
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If_ = —2y3 ﬁ;_ = 24y - 2y3
Oox ox
2m
p = 1kg/ms3
q=28
Nm7skg - Fig. 4.23. Problem
x = 2N/Ks * 3 def-inition for Exercise
X 4.3
T =20 (temperatures in K)
W W
2 2
® 3/2 i Pa
P Py
1
) )
Py P
p? p?
X X
0 2~ 0 ha 2
0 1 2 0 3/2 2

Fig. 4.24. Numerical grids for Exercise 4.3

Exercise 4.4. Formulate a finite-volume method of 2nd order for
equidis- tant grids for the bar equation (2.38). Use this for
computing the displace- ment of a bar of length L = 60 m with
the boundary conditions (2.39) withA(x) = 1 + x/60, uo = 0, and
kz =4 N employing a discretization with three equidistant CVs.

Exercise 4.5. Formulate a finite-volume method of 4th order for the
mem- brane equation (2.17) for an equidistant Cartesian grid.

Exercise 4.6. Consider the integral

S

I = ¢dS



the length Ay of Se) forthe approximation
I = ¢(3, a)Ay
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depending on the parameterca [1, 3]. (ii) Compute | for the
function ¢(x, y) = x3y4 directly (analytically) and with the
approximation defined in (i) with o« = 2. Compare the two
solutions.

Exercise 4.7. The velocity vector of a two-dimensional flow is
given by

v = (Vi(X, ¥), Va(X, ¥)) = (X COS my, X4y) .

Let the flux through the surface S of the control volume V = [1, 2]2 be
defined

by
J

Vin; ds.

(i) Approximate the integral with the Simpson rule. (ii)
Transform the in- tegral with the Gaul} integral theorem into a
volume integral (over V) and approximate this with the
midpoint rule.
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UNIT IV

GRID GENERATION

STRUCTURED GRIDS

Structured grids can be considered as most ‘natural’ for flow problems as the flow is generally
aligned with the solid bodies and we can imagine the grid lines to follow in some sense the
streamlines, at least conceptually, when not possible realistically.

It has to be emphasized that structured grids will, compared to unstructured grids, often be more
efficient from CFD point of view, in terms of accuracy, CPU time and memory requirement.

The reason behind the development of unstructured CFD codes is essentially connected to the time
required to generate good quality block-structured grids on complex geometries. This task, with
the best available software tools, can easily take weeks or months of engineering time and the
associated engineering costs are considered as prohibitive industrially. Hence, the requirement for
automatic grid generation tools has become essential for the further developmentof industrial CFD.
This explains largely the preference given nowadays to unstructured CFD solvers, due to the
availability of general-purpose automatic grid generation methods.

However, it remains also possible to generate automatic block-structured grids, when restricted
to well-defined families of topologies. Examples are shown in the following.

The ideal mesh is a Cartesian distribution, where all the points are equidistant and where all the
cells are perfect cubes, with Ax=Ay=Az. This grid will be associated with the highest possible

accuracy of the discretized formulas, where the finite volume method leads to the same formulas
as finite differences. Hence, all evaluations of grid qualities will be done by comparing a selected
cell to the ideal cubic cell.

When curved solid surfaces are present, they cannot be part of the Cartesian mesh lines and we
have two options: either we keep the Cartesian structure of the grids or we move away from the
ideal and introduce curvilinear grids in order to fit the grid lines to the solid surfaces. We call these
types of grids ‘body fitted’. In the former case, we have to define a particular treatment to the cells
cutting the solid surface. In the latter case, we have to generate grids that follow the solid surfaces,
for instance by defining curvilinear coordinates (£, 77, ) that would be constant along the lines
of mesh points in the physical space and Cartesian in the mathematical space formed by these
variables. Various topologies of the grid lines can be defined, and will be presented in this section.

The drawback of structured grids is a form of stiffness connected to the fact that adding a point
locally implies adding lines of each family through that point, which will therefore affect the whole
domain. In complex geometries, this can be very detrimental and render the grid generation
process quite cumbersome. One way to ease these constraints is to define multi-block
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grids, each block covering a subset of the computational domain with its own structured grid. This
can be further generalized when the connectivity of the points at the block interfaces is relaxed by
allowing ‘nonmatching’ lines at the inter-block boundaries. This provides maximum flexibility to
block-structured grids.

Another way is to allow for overlapping grids, each grid being attached to a solid body, when
multiple moving bodies are present, or to separate blocks. Both ways imply sophisticated treatment
for the interpolation of the numerical flow variables between two independent grids, with the
requirement to satisfy constraints of conservation and accuracy.

4.1.1 Cartesian Grids

As mentioned above, uniform Cartesian grids are the ideal solution from the point of view of
accuracy and they should be applied whenever possible. It is a valid option when the solid walls
are parallel to the Cartesian axes, or in absence of solid walls in free space.

Cartesian grids are often applied in aero-acoustic computations, where high order schemes are
required for an accurate simulation of the propagation of acoustic pressure waves (see for
instance the review paper by Tam (2004)).

4.1.2 Non-uniform Cartesian Grids

Variable mesh sizes

A first variant on the ideal Cartesian uniform grid is to allow for variable values of the mesh
spacing, for instance in boundary layers where a strong clustering near solid walls is required.
Figure 4.1.1 shows an example of a Cartesian grid applied to the flow simulation over and in a
rectangular cavity.

Quadtree-Octree grid

A second variant consists of allowing for local refinements with ‘hanging nodes’, also called non-
conformal grids, obtained by subdividing an initial Cartesian grid in sub-cells, either uniformly or
non-isotropically, as shown in Figure 4.1.2. This leads to a quadtree structure in 2Dand an octree
structure in 3D.

In presence of curved boundaries, Cartesian grids still remain an option, with the advantage that
the grid generation process is trivial, while minimizing numerical errors. However, the treatment
of the curved solid boundaries requires special attention.

Several options can be considered:

» Method 1: The Cartesian type grid on both sides of the surface is maintained and a numerical
procedure is defined in the flow solver to handle the physical boundary conditions (Figure 4.1.3).
This is called the immersed boundary method
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Figure4.1.1 Cartesian grid with non-uniform cell sizes for a cavity.

Figure 4.1.2 Quadtree grid, with hanging nodes, around an airfoil, with staircase
boundary approximation.

* Method 2: The Cartesian cells outside the computational domain are removed,
replacing hereby the solid boundaries by a staircase shape; this is the case with
Figure 4.1.2.

* Method 3: The intersection of the solid surface with the Cartesian cells is defined,
leading to boundary cells of arbitrary shapes, called cut-cells; see Figure 4.1.4,
from Aftosmis et al. (2000). This requires the application of a finite volume
discretization on the cut-cell faces.
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Figure 4.1.3 Cartesian mesh around a solid boundary with Immersed Boundary
Method.

a b c d
[ ] [ ] [ ] [ ]
e J k f
° o o °

Cartesian mesh with embedded geometry

Figure 4.1.4 Cut-cell configuration; from Aftosmis et al. (2000). AIAA copyright.

4.1.3. Body-Fitted Structured Grids

In this approach, the grid is made curvilinear to adapt as far as possible to the geome-
tries. It calls upon more sophisticated methods to generate the grids in order to satisfy
requirements on smoothness and continuity of cell sizes. Depending on the orienta-
tion of the grid lines, various configurations can be selected, indicated by the letter
to which they resemble the most. We refer in this context to grids of H-type, C-type,
O-type, I-type and their various combinations.

H-mesh

The grid lines are curvilinear, approaching a set of horizontal and vertical lines in a
pseudo-orthogonal configuration, with a topology that can be associated to the letter H
(see Figure 4.1.5 for a representative example).
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Figure4.1.6 Structured curvilinear body-fitted grid of the C-type.

C-mesh

The grid lines are curvilinear, surrounding the geometry, with a topology that can be
associated to the letter C, on one side (for instance around the leading edge of the
airfoil), but remaining open at the other end of the computational domain. This can be
adapted to concentrate grid lines in the wake region of an airfoil or wing (see Figure
4.1.6 for a representative example).

O-mesh

The grid lines are curvilinear, surrounding completely the geometry, with a topology
that can be associated to the letter O. This option allows an accurate mesh point distri-
bution around both leading and trailing edges of external aerodynamic configurations,
such as wings and airfoil sections (see Figure 4.1.7 for a representative example).

I-mesh
In the particular case of highly staggered turbomachinery blade sections, the
quality requirement of nearly orthogonal cells is better fulfilled with grid lines
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Figure 4.1.8 Structured curvilinear body-fizzed grid of the I-type, for
turbomachinery blades. Courtesy Numeca Int.

nearly orthogonal to the blade sections, leading to a I-type topology, as shown on
Figure 4.1.8.

4.1.4 Multi-block Grids

In order to increase the flexibility, the range of application and the easiness of the
meshing process of structured grids, combinations of basic topologies can offer sig-
nificant advantages, in terms of achieving higher grid quality or adaptation to more
complex topologies. In this strategy, different mesh topologies are applied in different
regions of the computational domain, leading to multi-block configurations.

Matching and non-matching boundaries between blocks
Normally, we would attempt to satisfy the condition of full matching mesh lines
between the blocks, wherebythe mesh lines cross the block boundaries in a continuous
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Figure 4.1.9 Representation of (a) matching and (b) non-matching block
boundary interfaces of a multi-block-structured grid, with a channel connecting
two circular ducts.

Figure 4.1.10 Full non-matching block boundary interfaces of a
multi-block-structured grid. Courtesy Numeca Int.

way. However, in order to exploit maximally the potential of block-structured grids,
the additional flexibility of allowing for non-matching block interfaces offers sig-
nificant advantages. The price of this enhanced flexibility is the necessity for the
flow solver to handle with sufficient accuracy the transfer of information through the
non-matching interface, requiring sophisticated interpolation routines between two
totally independent surface grids.
This is illustrated in Figure 4.1.9, where the choice between the two options is
still available. This is not always the case and Figure 4.1.10 shows an example where
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Figure 4.1.11 Structured curvilinear body-fitted grid of the C—H type.
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Figure 4.1.12 Structured multi-block body-fitzed grid of the H-O-H type.

smaller exhaust pipes are connected on a larger duct. In this case, both components
can be meshed optimally and freely connected in a non-matching mode.

C-H mesh
This combines a C-mesh around the body and an H-mesh in the upstream region as
shown in Figure 4.1.11.

H-O—H mesh
In this configuration, an O-mesh is kept around the body, while H-topologies are
defined in the upstream and downstream regions (see Figure 4.1.12).

‘Butterfly’ grids for internal flows

High quality structured grids with internal flow configurations, such as complex ducts,
are difficult to ensure and a high level of flexibility is required. One of the options
is obtained by the so-called ‘butterfly’ topology shown in Figure 4.1.13, for a simple
duct section.

It can also be applied to bulbs of a rotating axis, in order to avoid a singular mesh
line on the axis of rotation, at zero radius. Figure 4.1.14 shows combinations of
block-structured grids, obtained with the automatic grid generator Autogrid™ from
Numeca Int. (http://www.numeca.be), applied to the pump inducer of the liquid
hydrogen pump of the VULCAIN engine of the European ARIANE 5 rocket launcher.
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Figure 4.1.13 Structured multi-block body-fitted grid of the ‘butterfly type.

Figure 4.1.14 Multi-block grid for the inducer of the hydrogen pump of the
European ARIANE 5 rocket launcher. The figure on the left is a zoom on the
‘butterfly’mesh on the bulb. Courtesy SNECMA and Numeca Int.

O-H grids with matching and non-matching periodic boundaries
For internal turbomachinery flow simulations, a high degree of mesh flexibility is
required and various combinations can be considered to enhance the quality of the
grids. For instance, a combination O—H, associated with either matching (a) or non-
matching (b) periodic boundaries for a turbine blade row are shown on Figure 4.1.15.
Figures 4.1.14 and 4.1.17 show two industrial examples, respectively, of an indus-
trial heat exchanger combining matching and non-matching multi-block interfaces.

Overset grids

Another alternative to flexible block-structured grid generation is the technique of
overset grids, also called ‘chimera’ technique, where independent generated grids
around a fixed or moving body are made to overlap with a background fixed grid. This
technique is largely applied with several bodies in relative motion where a mesh is
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Figure 4.1.15 Structured curvilinear body-fitted grid of the O—H type:
(a) matching periodic boundaries and (b) non-matching periodic boundaries.
Courtesy Numeca Int.

Figure 4.1.16 Structured multi-block grid of an industrial heat exchanger
combining matching and non-matching multi-block interfaces. Courtesy Atlas
Copco and Numeca Int.

attached to each body. The drawback is related to the necessity for an accurate inter-
polation between three-dimensional overlapping grids. This is extremely challenging,
particularly if conservative interpolations are required.

Note that the overset principle can equally be applied with unstructured grids,
although it was developed initially for structured grids (Steger et al., 1983; Benek
etal., 1985).

Figure 4.1.18 shows overlapping grids around moving parts of a flying structure,
with a zoom on a section of the overlapping region.
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Figure 4.1.17 Structured multi-block grid of an industrial inlet ducting with guide
vanes, combining matching and non-matching multi-block interfaces. Courtesy
Atlas Copco and Numeca Int.
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Figure 4.1.18 Overlapping grids around moving parts of a flying structure, with a
zoom on a section of the overlapping region.

UNSTRUCTURED GRIDS

Unstructured grids have progressively become the dominating approach to industrial
CFD, due to the impossibility to generate automatically block-structured grids on
arbitrary geometries. It is indeed nearly impossible, for topology-connected reasons,
to envisage an automatic block-structured grid generator without an a priori knowl-
edge of the involved topologies. However, this is possible with unstructured grids
and therefore unstructured flow solvers for the Navier-Stokes equations have gained
wide acceptance.

Although on a same regular distribution of points, an unstructured grid, formed for
instance by triangles in 2D, will tend to have a lower accuracy than the corresponding
structured grid, as will be shown in Section 4.4, this trend has arisen because of the
industrial requirements for automatic grid generation tools.

One of the advantages of unstructured grids is the possibility to perform local
refinements in a certain region, without affecting the grid point distribution outside
that region. This opens the way for flexible grid adaptation by local refinement or
local coarsening, based on some criteria associated either to some flow gradients or
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to some error estimation. Grid adaptation is based on the addition or removal of mesh
points in order to increase the accuracy in regions of strong flow variations and by
removing points in regions where the solutions has already reached an acceptable
accuracy. This process has as objective to optimize the number of grid points for a
certain level of accuracy.

The space domain can be discretized by subdivision of the continuum into elements
of arbitrary shape and size. Since any polygonal structure with rectilinear or curved
sides can finally be reduced to triangular and quadrilateral elements, they form the
basis for the most current space subdivision in 2D space. Cells with an arbitrary
number of faces can also be considered, resulting from a dual grid construction, or
from an agglomeration process of groups of cells into coarser cells, as required by
multigrid methods. The only restriction is that the elements may not overlap and have
to cover the complete computational domain.

Most of the unstructured grid generators applied in practice are focused on the
generation of basic cell shapes formed by:

424 triangle/tetrahedra elements;

425 hybrid elements involving combinations of tetrahedra, pyramids and prisms, the
latter being concentrated near the solid surfaces;

4.2.6 quadrilaterals and hexahedra.

4.2.1 Triangle/Tetrahedra Cells

Various methods are available to generate triangular/tetrahedral grids around arbitrary
bodies. Most of them require an initial surface triangulation, which has to be generated
first, before launching the generation of the volume mesh. See for instance the books
by George and Borouchaki (1998) and Frey and George (1999) for an overview.

The following examples are obtained with the system DELANDO developed by
Jens-Dominik Maller (see http://www.cerfacs.fr/~muller/delaundo.html).

Figure 4.2.1 shows a two-dimensional unstructured grid with triangular cells,
around an airfoil with flaps.

Anexample of acomplextetrahedral grid is shownon Figure 4.2.2, generated for the
simulation of the electrochemical plating of a system of decorative cronium wheels.

Figure 4.2.1 Example of an unstructured triangular grid.


http://www.cerfacs.fr/
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Figure 4.2.2 Example of an unstructured tetrahedral grid for the simulation of
electrochemical plating of a system of Decorative Cronium wheels. (a) Full view

(b) Zoom on one of the wheels. Courtesy Von Karman Institute and Vrije
Universiteit Brussel, Computational Electrochemistry Group.
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4.2.2 Hybrid Grids

The main difficulty with triangular/tetrahedral grids is connected to the boundary
layer requirements of high Reynolds number flows, where the grid density in the
normal direction has to be adapted to the boundary layer velocity profiles. As §7en in
Section 4.3, the ratio of mesh sizes should optimally be of the other x/ y~ (Re),
where x and vy are the representative mesh sizes in the streamwise and normal
directions, respectively. This implies mesh aspect ratios x/ y of the order of 1000, for
typical industrial flows, which would lead to very poorly configured triangles with
height to base ratios of that order and, consequently, a significant loss of accuracy.

To avoid this problem, hybrid grids have been developed, whereby layers of quadri-
laterals or prisms are generated in the near-wall region, by a form of extrusion process
out of the triangulated surface grid. This is shown on Figure 4.2.3, for a 2D case, from

the same reference as the previous figure http://www.cerfacs.fr/~muller/hip.html.

A three-dimensional example of a hybrid grid for a gas-turbine stator with rows
of film cooling holes in the leading edge region is shown on Figure 4.2.4. The grids
are obtained with the CENTAUR™ grid generator from Centaursoft (http://www.
centaursoft.com), showing different views of the hybrid grid. The top figure shows
the 3D view and the other figures show a 2D section with a close-up view of the
leading edge region.

4.2.3 Quadrilateral/Hexahedra Cells

It is known from numerous simulations (see also Section 4.4) that hexahedra offer
significant advantages compared to tetrahedral cells, in terms of memory requirements
and accuracy. For tetrahedral grids, the ratio of the number of cells to the number of
vertices is close to 6, not taking into account the boundaries. (for a two-dimensional
triangulation this ratio is of the order of 3); while this ratio remains close to one for
hexahedral cells.
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Figure 4.2.3 Example of an unstructured hybrid grid showing the regular
quadrilateral type structure near the solid walls.
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Automatic generation of unstructured hexahedra is quite challenging and some
examples from the HEXPRESS™ generator from Numeca Int. (http://www.
numeca.be) are shown in the following figures. In this approach, the surface mesh
is obtained from the volume mesh, through a projection step of a Cartesian/octree
volume mesh, whereby the initial generation of a surface mesh is not required. Figure

4.2.5 shows a 2D quadrilateral grid around an airfoil, while Figure 4.2.6 shows a 3D

unstructured hexahedral grid of a valve system, with cuts displaying the internal cells.

Similarly, Figure 4.2.7 shows the hexahedral mesh for a complex dusting system,
with appropriate cuts to visualize the internal volume cells.

4.2.4 Arbitrary Shaped Elements

The most general unstructured grid configuration is obtained with cells having an
arbitrary number of faces. They can be defined either by considering the dual mesh
of a base grid formed by simple shapes, or by an agglomeration process of cells.

Figure 4.2.4 Three-dimensional hybrid grid of a turbine blade with fi/m cooling
configuration, with a 2D section and a close-up view of the leading edge region.
Fromhttp://www.centaursoft.com.
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UNIT V

CFD TECHNIQUES

Lax-Wendroff technique

MacCormack’s technique

Relaxation technique
Alternating-Direction-Implicit (ADI) Technique
Pressure correction technique

Numerical procedure- SIMPLE algorithm

Boundary conditions for the pressure correction method

LAX WENDROFF TECHNIQUE

The Lax-Wendroff technique is an explicit, finite-difference method particularly suited to
marching solutions. The idea of numerical solutions obtained by marching in steps of time or space
is associated with the solution of hyperbolic and parabolic partial differential equations. A good
example of a flow-field problem governed by hyperbolic equations is the time-marching solution
of an inviscid flow using the unsteady Euler equations. The behavior of such a time- marching
solution is discussed in the present section by considering an unsteady two dimensional inviscid

flow. The governing Euler equations are given below
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time 7. Then the density at the same grid point (7, /) at time ¢ + A, denoted by p;* AL
is given by the Taylor series
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When employing Eq. (6.5), we assume that the flow field at time 7 is known, and Eq.
{6.5) gives the new flow field at time ¢ + Af. In Eq. (6.5), o‘J is known from the
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by Eq. (6.5). In this equation, a number for (Jp/0f); ; 1s obtained from the continuity
equation, Eg. (6. I) where the spatial derivatives arc given by second-order central
differences. That is, from Eq. (6.1),
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In Eq. (6.9), all quantities on the right-hand side are known because the flow field at

time ¢ is known. Hence, Eq. (6.9) provides a number for (dp/dr) , which 1s inscrted

into Eq. (6.5). This takes care of the second term on the right 51dc of Eq. (6.5). The

third term, (B‘p/c‘?r) , 1s obtained in a similar fashion but requires more effort.

Specifically, dlﬂ‘erentlate Eq. (6.1) with respect to time.

(‘92[)_7 Pu +@@+u82p +5p8u1 Qv
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The mixed second derivatives in Fn (ﬁ ]ﬂ\ such as rri‘u "(.r'—h' ﬁr‘\ are ohtained hv

dlfferentiatlng Egs. (6.1) to (6.4) w1th respect to the proper spat1al variable. For
example, &%u/(Ox 97) is obtained by differentiating Eq. (6.2) with respect to .
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& pl(Ox Ory is found by differentiating Eq. (6.1) with respect to x and replacing all
derivatives on the right side with second-order central differences, analogous to the
form of Eq. (6.12). To conserve space, we will not write out the full result here.
Continuing further with Eq. (6.10), a number for &v/(8y 1) is found by differ-
entiating Eq. (6.3) with respect to y and replacing all derivatives on the right side
with second-order central differences. The last mixed derivative in Eq. (6.10), 8% p/
(Fy d1), is found by differentiating Eq. (6.1) with respeet to y and replacing all
derivatives on the right side with second-order central differences. The only
remaining derivatives on the right side of Eq. (6.10) are the first spatial derivatives,
namely, Su/Ox, Ovidy, dp/dx, and Op/0y, replaced by sccond-order central differ-
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and so forth, as well as the first time derivatives 9p/0t, Ou/dt, and w/dt. A number
for Op/0t has already been obtained from Eq. (6.9). Numbers for du/0t and Ov/it are
obtained in like fashion by inserting second-order central differences into the right-
hand side of Egs. (6.2) and (6.3), respectively. With all this, we finally obtain a
number for 3”p/07 from Eq. (6.10). In turn, this is substituted into Eq. (6.5). Since
Op/Ot was obtained earlier from Eq. (6.9), we now have known values at time ¢ for
all three terms on the right side of Eq. (6.5), namely, p P (Oplor). P and
(82,0/(912): This allows the calculation of den51ty at time 7 + Af, namely,
ij]fAf, obiained from Eq. (6.5).
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FIG. 6.2

A schematic of the grid for time marching.
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is obtained from
dp )

where (0p/0),, 18 a representative mean value of Jp/0t between times f and ¢ + At
Compare Eq. (6.13) with its counterpart for the Lax-Wendroff method, Eq. (6.5).
In Eq. (6.5), the time derivatives are cvaluated at time ¢, and the carrying of the
second derivative (0°p/0r%). , is necessary to obtain second-order accuracy. In
contrast, in Eq. (6.13), the value of (9p/01),, is calculated so as to preserve sccond-
order accuracy without the need to calculate values of the second time derivative
(FPplory, ;» which is the term which involves a lot of algebra. With MacCormack’s
technique, this algebra is circumvented.
Similar relations are written for the other flow-field variabies.
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Let us illustrate by using the calculation of density as an example. Return to
Eq. (6.13). The average time derivative, (Op/0f)4. is obtained from a predictor-
corrector philosophy as follows.
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In Egs. (6.19) to (6.20a), numbers for the time derivatives on the right-hand side are
obtained from Eqgs. (6.2) to (6.4), respectively, with forward differences used for the
spatial derivatives, similar to those shown in Eq. (6.17) for the continuity equation.

Corrector step. In the corrector step, we first obtain a predicted value of the time
derivative at time ¢ + Af, (f@p/@t)ﬁj A by substituting the predicted values of p, u,
and v into the right side of the continuity equalion, replacing the spatial derivatives

with rearward differences.
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MacCormack's technique as described above, because a two-step predicior-
corrector sequence is used with forward differences on the predictor and with
rearward differences on the corrector, is a second-order-accurate method. Therefore,
it has the same accuracy as the Lax—Wendroff method described in Sec. 6.2.
However, the MacCormack method is much easier to apply, because there is no need
to evaluate the second time derivatives as was the case for the Lax-Wendroff
method. To see this more clearly, recall Eqs. (6.10) and (6.11), which are required
for the Lax-Wendroff method. These equations represent a large number of
additional calculations. Moreover, for a more complex fluid dynamic problem
such as the flow of a viscous fluid, the differentiation of the continuity, momentum,
and energy equations to obtain the second derivatives, first with respect to time, and
then the mixed derivatives with respect to time and space, can be very tedious and
provides an extra source for human error. MacCormack’s method does nof require
such second derivatives and hence does not deal with equations such as (6.10) and
(6.11).

In MacCormack’s technique, the use of forward differences on the predictor
and rearward diffcrences on the corrector is not sacrosanct; the same order of
accuracy is obtained by using rearward diffences on the predictor and forward
differences on the corrector. Indeed, a time-marching solution can be carried out by
alternating between these two sequences at every other time step, if you so choose.

GUIDEPOST

It you arc anxious to start a computer project using MacCormack’s technique, you can
follow this guidepost now and retum to Chap. 6 at a later time.




2.3.1. Wntten 1n the torm tfor steady ilow, these equatons have a mathematical
behavior which is partially elliptic. The Lax-Wendroff and MacCormack techniques
are not appropriate for the solution of elliptic partial differential equations.
However, the unsteady Navier-Stokes equations have a mixed parabolic and elliptic
behavior, and therefore the Lax-Wendroff and MacCormack techniques are suitable.
Indeed, the MacCormack technique has been used extensively for solutions of the
unsteady Navier-Stokes equations by means of time-marching solutions. The idea is
the same as discussed in Sec. 6.3; the Navier-Stokes equations are written with the
time derivatives on the left side and spatial derivatives on the right side of the
equations. The spatial derivatives are replaced in (um by forward and rearward
differences on the predictor and corrector steps, respectively.* The approach is
exactly the same as discussed in Sec. 6.3; the only difference is the larger number of
spatial derivatives that are present in the Navier-Stokes equations compared to the
Euler equations.

6.4.2 Conservation Form

For simplicity, we will continue to use the Euler equations in our discussion. The
conservation form of the Fuler equations suitable for CFD calculations was

* This statement is true for the convective terms. Howcver, it has been the author’s experience, as well
as that of many others, that the viscous terms should be centrally differenced on both the predictor and
corrector steps.




two-dimensional flow shown in Fig. 6.3. The

L

general flow direction is from left to

x

right in the xy plane. For simplicity, assume the flow is inviscid; hence the governing
flow equations arc the Euler equations. In the generic, conservation form, this
system of equations is given by Eq. (2.110), reduced to a two-dimensional form as
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FiG. 6.3
A schematic of the grid for space
marching.



7oLy

Note that, in keeping with our previous notation, the index for the marching
variable, m this case /, is used as a superscript. In Eq. (6.25), (0F/ix),, is a
representative average value of the x derivative of F evaluated between x and
x + Ax. It is found from Eq. (6.24) by means of a predictor-corrector approach, as
follows.

Predictor step. In Eq. (6.24), replace the y derivative with a forward difference:

(Y _y GG
\ox/, ay
In Eq. (6.26}, all terms on the right side are known numbers, because the flow is

known along the vertical line through point (i, 7). Calculate a predicted value for F at
pont {i + 1, /) from a Taylor series:

(6.26)

_ - (OFY
+1 _ "
FT =F+ (E)J Ax (6.27)
where, as in Sec. 6.3, the barred quantity represents a predicted quantity. Keep in
mind that the shorthand vector notation shown in Eqs. (6.26) and (6.27) represents
these operations on the individual continuity, momentum, and energy equations,
where the elements of 7 and G are given by Eqs. (2.106) and (2.107), respectively.

That is, Fj“ represents the predicted values of its individual elements, given for
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In Eq. (6.29), the values of GI*' and G!| are constructed from the predicted
primitive variables which had been decoded earlier in the predictor step. The
average value, (OF/(x),,, is now formed as an arithmetic mean
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Tn turn, the final, correcled value of F;,, ; is obtained from Eq. (6.25), repeated
below:

Fiml=F+ (Q{i) Ax (6.25)
a'x av

Clearly, this spatial, downstream marching solution using MacCormack’s technique

is a direct analog of the time-marching solution discussed in Sec. 6.3, with the

marching variable x playing the role of the earlier marching variable «.

There are two noteworthy differences associated with the downstream
marching approach compared to the time-marching approach. The first has already
been mentioned: it is associated with the need to decode the primitive variables from
the flux variables. This decoding is simple when a time-marching solution of the
conservation form of the equations is employed, as reflected in Egs. (2.100) to
(2.104), but it is more elaborate when a spatial-marching solution of the con-



Therefore, the relaxation technique is frequently applied to the solution of low-
speed subsonic flow. Relaxation techniques can be either explicit or implicit. See
Ref. 13 for an in-depth discussion of various relaxation techniques as applied to
CFD problems. In the present section, we will describe an explicit relaxation
technique, sometimes called a point-iterative method.

Fot purposes of illustration, let us consider an inviscid, incompressible, two-
dimensional irrotational flow. For such a flow, the governing flow equations reduce
to a single partial differential equation, namely, Laplace’s equation, in terms of the
scalar velocity potential @, where @ is defined such that V = V@. We will not
provide the details here but rather make the assumption that you have some
familiarity with such matters. If not, or if you simply need a review of the derivation,
see, for example, Sec. 3.7 of Ref. 8. We will simply state here that the governing
equation 1is

Fo o

oot " (6.31)

We wish to solve Eq. (6.31) numerically on the grid shown in Fig. 6.4.
Replace the partial derivatives in Eq. (6.31) with second-order, central second
differences, given by Eqs. (4.12) and (4.13).
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Examining the gnid in Fig. 6.4, note that grid points | through 20 constitute the
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an elliptic equation to be well-posed. In terms of the grid shown in Fig. 6.4, this
means that ®; through ®,, are known values, equal to the given boundary
conditions at points 1 through 20. The values of @ at all other grid points—
the internal grid points—are unknown. Equation (6.32), centered around grid point
(i, j), contains five of these unknowns, namely, ®; 1 ;,, ©; ;, ©;iy ;, i1,
®; ;. In principle, Eq. (6.32) can be written around each of the internal grid
points (there are 15 such points in Fig. 6.4), leading to a system of 15 linear
nnnnnnn

for solving these simultaneous equations. One is the standard Cramer’s rule;
however, the number of calculations required for the implementation of Cramer’s
rule is very large, due to the need to evaluate determinants of the size [5 x 15 for
the present example. For any real calculation, hundreds or even thousands of grid
points may be employed. Clearly, the use of Cramer’s rule is out of the question for
such applications. Another, and much more reasonable, direct solution is gaussian
elimination (see, for example, Ref. 13). However, the simplest approach is to use a
relaxation technique, as described below.

The relaxation technique is an iterative method, wherein values of four of the
quantities in Eq. (6.32) are assumed to be the known values at iteration step » and
only one of the quantities is treated as an unknown at iteration step » + 1. In Eq.
(6.32), let us choose @, ; as that unknown. Solving Eq. (6.32) for ®@; ,, we have
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(6.35)

In Eq. (6.35), ®@3;F! is the unknown: ®F, and @7, are known from the previous
iteration, @5 is known from the stlpulated boundary condition, and ®%;"! is known
from Eq. (6.34), which was the immediately preceding calculation. In ﬂ'llS fashion,
the unknown @ at iteration # + 1 are progressively calculated along a given
horizontal line, sweeping from left to right. (This approach is called the Gauss-
Seidel method.) There is nothing magic about this sweeping direction. During the
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from right to left, from top to bottom or from bottom to top.

The above procedure is repeated for a number of iterations; convergence is
achieved when (D”“ @/ ; becomes less than some prescribed Value at all grid
points. The degree to which you wish convergence to be achieved is up to you; the
more iterations you take, the greater will be the accuracy.

Frequently, the convergence to a solution sometimes can be enhanced by a
technique called successive overrelaxation. This is an extrapolation procedure based
on the following idea. We interpret Eq. (6.33) as yielding an intermediate value of

@; ;, denoted by @} 7', where
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ARTIFICIAL VISCOSITY

Many aspects of life are never quite what they appear to be at first impression—
CFD is no different. For example, in the present chapter we have discussed
several techniques for the numerical solution of the goveming flow equations.
We have approached these discussions, as well as those in previous chapters,
from the point of view that numerical solutions of the Euler or Navier-Stokes
equations are being obtained within an accuracy determined by the truncation and
round-off errors. The focus has been on the fact that we are solving some specific
partial differential equations but that the numerical solutions are always somewhat
11 error.

There is a different perspective that we can take on this matter, one with a
shade of difference compared to our previous discussions. For simplicity, let us
consider a model equation, namely, the one-dimensional wave equation given by

Su ta u
Ot Ox
with @ > 0. We consider (6.38) to be the specific partial differential equation that
we want to solve numerically. Let us choose to discretize this equation by using a

first-order forward difference in time and a first-order rearward difference 1 space.
Then Eq. (6.38) is represented by the following difference equation:

0 (6.38)
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Rearranging Eq. (6.42), we obtain
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Pause for a moment and examine E he left-hand side
hand side of the original partial differential equation given by Eq. (6.38); the right-
hand side of Eq. (6.43) is the truncation error associated with the difference
equation given by Eq. (6.39). Clearly, this truncation error is O(Ar, Ax). Let us now
replace the time derivatives on the right-hand side of Eq. (6.43) with x derivatives as
follows. First, differentiate Eq. (6.43) with respect to 7. (We will drop the subscript i
and superscript ¢, since we know that all derivatives are being evaluated at point i

and at time £.)
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Equation (6.47) provides the expression for “w/3¢" which is to be substituted for
the first term on the right-hand side of Eq. (6.43). Before carrying out this
substitution, however, let us treat the second term on the right-hand side of Eq.
(6.43), namely, the third time derivative. We do this by differentiating Eq. (6.47)
with respect to time, yielding

33 3B
Fu_ 2 TU L oar AY) (6.48)
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Differentiating Eq. (6.45) with respect to x and multiplying by @, we have
Fu Fu
? P — = O(At, Ax 6.49
“ o ot 5 O(ar, Ax) (6.49)
Adding Eqgs. (6.48) and (6.49), we have
Pu , Pu
— = —a — + O(Ar, Ax 6.50
a5~ 9 g 0L Ax) (6.50)

Equation (6.50) provides an expression for the third time derivative to be inserted
into both Egs. (6.47) and (6.43). Returning to Fq. (6.47), we see two mixed
derivatives with respect to ¢ and x that must be treated. Diflerentiating Eq. (6.47)
with respect to x, we have
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+ O(At, Ax) (6.51)
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A rearrangement of Eq. (6.55), along with the definition of v as v = a Av/Ax, yields
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Note that ]-?q (6 56} 18 apama! dyjé’?‘é’r"iﬂﬂ: €¢’1'uuuuu in its own 1151u., CGﬂL&lﬁiﬁg the

terms Su/dt, Suldx, Fulox’, F'uldx’, ete. Finally, with Eq. (6.56) in mind, we are
ready to emphasize the different perspective mentioned at the beginning of this long
paragraph. Previously, we viewed an exact solution (no round-off error) of the
difference equation, Eq. (6.39), as constituting a numerical solution of the original
partial differential equation given by Eq. (6.38) but with an error given by the
truncation error. However, there is another way of looking at this matter. In reality,
the exact solution (no round-off error) of the difference equation, Eq. (6.39),
constitutes an exact solution (no truncation error) of a different partial differential
equation, namely, Eq. (6.56). Eq. (6.56) is called the modified equation. To repeat,
when the difference equation, Eq. (6.39), is used to obtain a numerical solution of
the original partial differential equation, Eq. (6.38), in reality this difference
equation is solving quite a different partial differential equation—it is solving
Eq. (6.56) instead of Eq. (6.38).

The derivation and display of the modified equation, as obtained above, is of
more importance than just establishing a different perspective on the meaning of the



we start at time »ero with an exact discontinuous wave as sketched i Fig. 0.3, then
during the course of the solution the effect of numerical dissipation will be to spread
out this wave in much the same way that real physical viscosity would spread the
wave. Of course, the reason why the wave will spread in our numerical solution has
nothing to do with physical viscosity; rather, it has everything to do with the fact
that the exact numerical solution of the difference equation, Eq. (6.39), is a solution
of Eq. (6.56) instead of the original partial differential equation given by Eq. (6.38),
and Eq. (6.56) has some terms on the right-hand side that play the role of
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FIG, 6.5
Effect of numerical dissipation. (a) Tnitial wave at time £ = 0. {(b) Shape of the wave at some time ¢ > 0
from the numerical solution as affected by numerical dissipation.



e SOIUTON dOEs IOL Nave enougn artlclal viscosity implicitly in the algorithm, and
the solution will go unstable unless more artificial viscosity is added explicitly to the
calculation. This raises one of the most perplexing aspects of CFD. As you
intentionally add more artificial viscosity to a numerical solution, you are increasing
the probability of making the solution more inaccurate. On the other hand, by
adding this artificial viscosity, you are at least able to obtain a stable solution,
whereas without it, in some cases no solution would be attainable. (Flow problems
with very strong gradients, such as shock waves, wherein such shock waves are
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FiG. 6.6
Effect of numerical dispersion. (&) Initial wave at ¢ = 0. {(b) Shape of the wave at some time ¢ >  from
the numerical solution as affected by numerical dispersion.




time-marching solution, a small amount of artificial viscosity can be added in the
following form:
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FEquation (6.58) is a fourth-order numerical dissipation expression; it is designed to
“tweak” the calculations by a magnitude equivalent to a fourth-order term in the
truncation error; i.e., it is equivalent to adding an extra fourth-order term to the
right-hand side of the modified equations for the system of difference equations
which are being solved. The fourth-order nature of Eq. (6.58) can be seen in the
numerators, which are products of two second-order central difference expressions
for second derivatives. In Eq. (6.58), C, and C, are two arbitrarily specified
parameters; typical values of C, and C, range from 0.01 to 0.3. The choice is up to
you and is usually determined after some experimentation with different values,
assessing their effect on the particular calculation. In Eq. (6.58), {7 denotes the
individual elements of the solutions vector, taken separately. To see this more
clearly, assume that we are using MacCormack’s technique. On the predictor step,
S}, is evaluated based on the known quantities at time ¢; on the corrector step, the
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by Egs. (6.58) and (6.59). It happens to be an empirically based expression which is
given here just for the sake of discussion.

To what extent does the addition of artificial viscosity affect the accuracy of a
problem? There is no pat answer to this question; it depends in a large part on the
nature of the flow problem itself. However, some feel for the extent to which
artificial viscosity can impact the solution of a flow problem can be obtained from
Ref. 44, there, a series of numerical experiments are reported wherein the value of
artificial viscosity was progressively varied and the resulting effects on the flow-
field variables were examined. Some of the results are reviewed here so that you can
obtain some of this feel. The flow problem is that of the supersonic viscous flow
over a rearward-facing step, as shown in Fig. 6.7a. The finite-difference grid used
for this study is shown in Fig. 6.7, The flow field is calculated by means of a time-
marching numerical solution of the Navier-Stokes equations using the MacCormack
techmque described in Sec. 6.3. The expression for artificial viscosity is given by
Egs. (6.58) and (6.59), and various calculations are made with values of C, and C,
ranging from 0 to 0.3. The calculations are made for a freestream Mach number of
4.08 and a Reynolds number (based on step height) of 849. The step height is
0.51 cm, and the calculations are made for a surface which extends 12.5 ¢m
upstream of the step and 2.04 cm downstream of the step. A calorically perfect gas
with the ratio of specific heats equal to 1.31 is used (this is to partially simulate the
“effective gamma” for partially dissociated air in a supersonic combustion ramjet
environment). Figure 6.8 shows the computed pressure contours for the flow, using
MacCormack’s technique. Here, four different contour pictures are shown, one each




the top comer and the recompression shock wave downstream ot the step can be
seen in all frames. However, careful examination of Fig. 6.8 shows that as C, and C,

are progressively increased (the magnitude of the artificial viscosity 1s 1ncreased),
the quantitative and qualitative aspects of the flow are perturbed. In Fig. 6.8a, where
zero artificial viscosity is used, the recompression shock wave is fairly sharp and
distinct, but there are wiggles ahead of and behind the shock. It is not easy to obtain
a stable, converged solution in this case; the calculations are sensitive, and some
“nursing” of the program is required. As the magnitude of the artificial viscosity 1s
progressively increased, as shown in Fig. 6.8b to 4, the solution behaves in a more
stable fashion, but the structures of the resulting steady-state flows are somewhat
different. This can be seen by comparing Fig. 6.8« and &; in Fig. 6.8d with heavy
artificial viscosity, the recompression shock has been smoothed by the increased
numerical dissipation. In contrast to Fig. 6.8«, we see no wiggles in Fig. 6.84, and
the shock wave is much more diffuse, while at the same time its location has
translated upward. In Fig. 6.7a, three different axial locations are denoted by the
numbers 1, 2, and 3. The velocity profiles (velocity versus vertical location y) for
these three locations are shown in Fig. 6.9a to ¢. In each figure, the profiles are
given for four different values of the artificial viscosity. Note that the velocity
profiles are affected by artificial viscosity. Finally, the wall pressure distribution—
the variation of pressure on the wall versus x location measured along the surface—
is given in Fig. 6.10. Here, x = 1 cm is the location of the step, and the pressure

distributions shown are those downstream of the step. The pressure atx = 1 cm is

essentially the base pressure, i.e., the pressure on the vertlcal step itself. Four
different curves are shown in Fig. 6.10, each one corresponding to a different value
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FIG. 6.8
Nurmerical experiment on the cffects of artificial viscosity. Pressurc eontours calculated with values of
the dissipation factors C; and C, ranging from 0 to 0.3. The freestream conditions arc M, = 4.08,

T = 1046 K, ratio of specific heats y = 1.31, and Reynolds number = 849 (based on a step height of
0.51 cm). The wall temperature T, = 0.29577,..

of artificial viscosity. Although the pressure distribution farther downstream of the
step 1s relatively insensitive to the amount of artificial viscosity, the base pressure
itself is quite sensitive to the artificial viscosity.

Note:  The impact of artificial viscosity on the qualitative aspects of a flow
solution is like that of the physical viscosity . By increasing the artificial viscosity,
shock waves are thickened and smoothed, just like an increased physical coefficient
of viscosity would cause. The details of separated flow regions are affected by
artificial viscosity, just like an increase in physical viscosity would cause. By adding
artificial viscosity, we are changing the overall entropy level of the flow field, just as
physical viscosity would cause. Finally, by increasing the artificial viscosity in a
numerical solution, we are in effect reducing the effective Reynolds number of the
flow, just as an increase in u would cause.
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Numerical cxperiment on the effects of artificial viscosity. Velocity profiles at the three locations
marked in Fig. 6.74. Same frcesircam conditions as listed in Fig. 6.8. The velocity given here is the
nondimensional value referenced to freestream velocity.

The purpose of this section has been to introduce you to the concepts of
numerical dissipation and the use of artificial viscosity for the stabilization and
smoothing of some numerical solutions. Many applications in CFD do not require
the addition of artificial viscosity. On the other hand, artificial viscosity, both

implicit in an algorithm and explicitly added as needed, is a fact of life in many
other CFD solutions. Such matters still remain a highly empirical aspect of CFD
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is the TVD (total-variation- dlmlmsﬁlng) concept. Such aspects are discussed in
Chap. 11. As you proceed further with your studies of CFD in the future, you will
most likely reap the benefits of such mathematical advancements.

6.7 THE ALTERNATING-DIRECTION-
IMPLICIT (ADI) TECHNIQUE

Let us return to the consideration of implicit solutions as exemplified by the Crank-
Nicolson technique, introduced in Sec. 4.4. In this section, an example of a
marching solution is given; Eq. (3.28) is used as a model equation with ¢ as the
marching variable. There exists only one other independent variable in the equation,
namely, x. As long as we are dealing with linear equations, the implicit solutions
using the Crank-Nicolson scheme are directly obtained from the use of Thomas’
algorithm (see App. A). This is the case in Sec. 4.4, where a finite-difference
representation of Eq. (3.28) is given in the tridiagonal form by Eq. (4.42). This
tridiagonal form is readily solved by the use of Thomas’ algorithm.

Note that the difference equation is linear. In Sec. 4.4, the original partial
differential equation, Eq. (3.28), is linear, hence leading to a linear difference
equation. In cases governed by nonlinear partial differential equations, a more
general idea for obtaining linear difference equations is discussed in Sec. 11.3.1.
When solving an inherently nonlinear problem by means of an implicit scheme, the
matter of linearizing the difference equations is of utmost importance so that
Thomas’ algorithm (or some equivalent) can be used to expedite the calculations.
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given by Eq. (4.42), Eq. (6.63) contains five unknowns, namely, 77 , T7 +,
7i+l ., Tit! and Ty, where the last two unknowns prevent a tridiagonal
form. Hence, Thomas® algorithm can not be used. Although matrix methods exist
which can solve FEq. (6.63), the computer time is much longer than that for a
tridiagonal system. As a result, there is a distinct advantage in developing a scheme
that will allow Eq. (6.62) to be solved by means of tridiagonal forms only. Such a
scheme, namely, the alternating-direction-implicit (ADI) scheme, is the main
subject of this section.

Recall that Eq. (6.62) is being solved by means of a marching technique;
that is, 7(f + Af) is being obtained in some fashion from the known values of
T(f). Let us achieve the solution of T7{t + A7) in a iwo-siep process, where
intermediate values of 7 are found at an intermediate time, ¢ + A#/2, as follows.
In the first step over a time interval A2, replace the spatial derivatives in
Eq. (6.62) with central differences, where only the x derivative is treated implicitly.

That is, from Eq. (6.62),

‘ 2 nl 172 n+1/2 ni 172 .
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(6.64)
Fquation (6.64) reduces to the tridiagonal form
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FIG. 6.11
First step in the ADI process. Sweeping in the x direction to obtain 7 at time 7 + A#/2.
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Note that 77" ' is known at all grid points from the first step. Equation (6.67)
yiclds a solution for T ”jl for all j, keeping i fixed, using Thomas’ algorithm. That
is, examining Fig. 6.12, at a fixed value of i, we sweep in the y dircction, using Eq.
(6.67) to solve for T ”’“ for all values of j, where j goes from 1 to M. This sweep
utilizes Thomas’s algorithm once. This calculation is then repeated at the next
column of grid points designated by 7 — 1. That is, replace i in Eq. (6.67) by i + 1
and solve for 77, ; for all values of j from 1 to M, usmg Thomas’s algorithm. This
process is renemed N times; i.e., there are N sweeps in the y direction, resulting in
Thomas’ algorithm being used N times. This sweeping in the y dircction is shown
schematically in Fig. 6.12. At the end of this step, the values of 7at time ¢ + Ar are
known at all grid points (7, /); that is, 77}' is known at all (i, /).

At the end of this two-step proceqq the dependent variable T has been
marched a value At in the direction of 7. Although there are two independent spatial
variablcs x and v in addition to the marching variable ¢, this marching scheme
involves only tridiagonal forms, and the solution has been achieved by the repeated
application of Thomas® algorithm. Because the scheme involves two steps, one in
which the difference equation is implicit in x and the other in which the difference
equation is implicit in j, the source of the name of the schcme—alternating-

Ar et 1l iodf
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The ADI scheme is second-order-accurate in £, x, and y; that is, the truncation
error is of O[(A1?, (Ax)%, (Ay)’). See Refs. 13 to 17 for details.
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FIG. 6.12
Second step in the ADI process. Sweeping in the y direction to obtain T at time 7 + Az

This scheme has found application in many fluid flow problems. In the form
described above, it is particularly useful for the solution of problems described by
parabolic partial differential equations. Also, the scheme described above 1s a
special form of a gencral class of schemes involving a splitting of two or more
directions in an implicit solution of the governing flow equations so as to obtain
tridiagonal forms. Hence, ADI can represent a general descriptor of a whole class of
schemes, one of which has been described in this section. Another popular version
of an ADI schemc is called approximate factorization; this is a more advanced topic

which 1s discussed in Sec, 11.3.2.

6.8 THE PRESSURE CORRECTION
TECHNIQUE: APPLICATION TO
INCOMPRESSIBLE VISCOUS FLOW

A numerical technique for the solution of inviscid, incompressible flow was
discussed in Sec. 6.5, namely, the relaxation technique. Inviscid, incompressible

flow i3 governed hw p”h\h(‘ pm‘hn] differential qulﬂ‘hﬂ‘l’lk and the relaxation
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technique, which 1s esscnnally an iterative proccess, is a classical numerical method
for solving elliptic problems. In contrast, viscous, incompressible flow is governed



compressible form simply by sctting density equal to a constant. That is, with
¢ = constanl, Eq. (2.29) becomes

vV.V=40 (6.68)

With the further assumption that u is constant throughout the flow, Eqs. (2.504) to
(2.50c) combined with Eqs. (2.57a) to (2.57f) become
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Note that in wrting Eqs. (6.69) to (6.71), the terms in Eqs. (2.57a) to (2.57f)
explicitly involving V - V have been set to zero due to FEq. (6.68). The fact that
V -V = { for incompressible flow allows a further reduction of Eqs. (6.69) to (6.71),
as follows.
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Rearranging Eq. (6.72), we have
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where 5/%u is the laplacian of the x component of velocity, u. Equations (6.70) and
(6.71) can be treated in a similar fashion. The resulting system of equations is the
incompressible Navier-Stokes equations, summarized below.

or

Continuity : V-V=90 (6.77)
entu D _ 0P g 6.78
m : — = 7 o :

X mo m P o o THVHU P (6.78)
D 0

y momentum : i —D—: = — 5_i + 1V + of, (6.79)
Dw d

z momentum : ijf =— 5]; + u Viw + pfs (6.80)

Note that Egs. (6.77) to (6.80) are sclf-contained; they are four equations for
the four dependent variables «, v, w, and p. Through the assumptions of p = constant
and g = constant, the energy equation has been completely decoupled from the
analysis. The implication here is that the continuity and momentum equations arc all
that are necessary to solve for the velocity and pressure fields in an incompressible
flow, and that if a given problem involves heat transfer, and hence temperature
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something else must be done. This phenomenon is further reinforced by the
observation that a compressible-flow CFD solution technique, when applied to a
flow field where the Mach number is progressively reduced toward zero, takes
progressively more time steps to converge; it is the author’s experience that a
compressible-flow code run for a flow which is everywhere at a local Mach number
of about 0.2 or less takes a prohibitive amount of time to converge, and indeed has a
tendency to be unstable at such a low Mach number.

For such reasons, in CFD, solution techniques for the incompressible Navier-
Stokes equations are usually different from thosc used for the solution of the
compressible Navier-Stokes cquations. The pressure correction method, to be
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success for compressible flow but with even more success for incompressible flow.
It is an accepted and widely used technique for incompressible, viscous, CFD

applications. Therefore, we focus on this method in the present section.
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6.8.2 Some Comments on Central Differencing of
the Incompressible Navier-Stokes Equations: The
Need for a Staggered Grid

The incompressible continuity equation is given by Eq. (6.77), which in two
dimensions 1s
@+ dv
ax Oy

(6.82)
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FIG. 6.13

Discrete checkerboard velocity distribution at each grid point; the number at the upper right is u and

that at the lower left is v



For the checkerboard pressure distribution illustrated in Fig. 6.14, Egs. (6.84a) and
(6.84h) give zero pressure gradients in the x and y directions, respectively. Clearly,
the pressure field discretized in Fig. 6.14 would not be felt by the Navier-Stokes
equations; rather, the numerical solution would effectively see only a uniform
pressure in x and y.

In short, when central differences are used for the incompressible Navier-
Stokes equations, the resulting difference equations are of a form that, when
presented with the nonsensical velocity and pressure distributions shown in Figs.
6.13 and 6.14, will tend to perpetuate these distributions. Admittedly, some early
central difference algorithms for incompressible viscous flow ignored this problem,
and successful solutions were still obtained, presumably because of special
treatment of the boundary conditions or by some other fortuitous aspect of the
numerical procedurc. However, given the weakness of the central difference
formulation described above, we should justifiably feel uncomfortable, and we
should look for some “fix” beforc embarking on the solution of a given problem.

Two such fixes are suggested. If upwind differences arc used instead of central
differences, the problem immediately poes away. A discussion of upwind differ-
ences is given in Sec. 11.4. However, another fix is to maintain central differencing
but stagger the grid, as described below.

A staggered gnid is illustrated in Fig. 6.15. Here, the pressures are calculated
at the solid grid points, labeled (i — 1)), G, ), G + L ), (1, j + 1), (@, j — 1), etc.,
and the velocities are calculated at the open grid points, labeled (i — %, NG+ 1-21-, N,
(i, j + 1), (i, j — 3), etc. Specifically, u is calculated at points (i — 1, /), (i + L, /),



etc., and v is calculated at different points (i, j + %), (i, — %) etc. The key feature
here is that pressures and velocities are calculated at different grid poinis. In Fig.
6.15, the open grid points are shown equidistant between the solid gnd points, but
this is not a necessity. An advantage of this staggered grid is, for example, that when
H; + 112, 7 15 calculated, a central difference for dp/Ox yields (p; 1, ; — py, ;/Ax; that
is, the pressure gradient is based on adjacent pressure points, which eliminates the
possibility of a checkerboard pressure pattern as sketched in Fig. 6.14. Also, a
central difference expression for the continuity equation, Eq. (6.82), centered

around pomt (i, j) becomes

Wivijz,j  Mi-1j2.j  Yij+1/2 Vij—1/2
=0 6.85
Ax i Ay (6.85)
Because Eq. (6.85) is based on adjacent velocity points, the possibility of a
checkerboard velocity pattern as sketched in Fig. 6.13 is eliminated.

6.8.3 The Philosophy of the Pressure Correction
Method

Tha nressure correction technicme 1o hnelﬂn"\r an 1+n1~qf1wp nnﬂfnar‘h ‘xrhpm some
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innovative physical reasoning is used to construct the next iteration from the results
of the previous iteration. The thought process is as follows:



is at hand.

6.8.4 The Pressure Correction Formula

The pressure correction p’ was introduced in Eq. (6.86). The calculation of the value
of p’ is the subject of this subsection. For simplicity, we will consider a two-
dimensional flow; the additional terms associated with the third dimension are
treated in a like manner. Also, we will neglect body forces.

The x- and y-momentum equations for an incompressible viscous flow are

given by Eqgs. (6.78) and (6.79), respectively. These equations are in nonconserva-
tion form. In conservation form they are (wee Sec. 2.8)

dpu) Op?y dlpuv)  Ip Pu Fu

Ot + dx * d  Dx (8x2 + o (6.88)
and

B(pv);a(pvu) AHpv?)  ap Py Py

T T M e (6.89)

As discussed in Chap. 2, the conservation form follows directly from the model of
an infinitely small volume fixed in space. Because of this model, a finite-difference
form of Egs. (6.88) and (6.89) will be somewhat akin to the discretized equations
obtained from a finite-volume approach. The original formulation of the pressure
correction method by Patankar and Spalding (Refs. 67 and 68) involved a finite-
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FIG. 6.16
Computational module for the x-momentum equation. The filled-in arca is an effective contral volume.
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Equation (6.92) is a difference equation representing the x-momentum equation.
Note that v and v in Egs. (6.91) and (6.92) are those values defined by Eqs. (6.90a
and b), i.e.,, v and v use different grid points than those for u.

In like manner, a difference equation for the y-momentum equation 18
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as shown in Fig. 6.17. We define average values of u at the points ¢ and o on the left
and right sides of the shaded cell in Fig. 6.17 as follows:

At point ¢ : u=3
At point d : = %

(ul—l’Z_;"I' U—1/2, j+l)

(12, Uic1/2 1)

Using a forward difference in time and central differences in space, Eq. (6.89)
becomes

(.pl)11+1f2 (10\/)1 i— ’2+BA: (pz_;+] p:j (695)
Ax




FIG. 6.17
Computational module for the y-momentum equation. The filled-in area is an effective control volume.

where
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Note that « and & in Eq. (6.93) are those values defined by the average values at
points ¢ and 4, i.e., ¥ and # use different grid points than those for v

As outlined in Sec. 6.8.3, at the beginning of each new iteration, p = p*. For
this situation, Eqs. (6.92) and (6.93) become, respectively,

At
wyh 1 * * * *
(pu )i:l/lj = (pu )f+ 1/2,j + A" At - Ax (Pz‘+1,j - pi,j) (6.94)
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(PV’)?,J'J;Q = (PV)?,]‘H/:; - (PV*)f,jH,Q

B =B-B
Phjir =Pijer —Piy
Prj =P =Pl

Eqgs. (6.96) and (6.97) are the x- and y-momentum equations expressed in terms of
the pressure and velocity corrections p’, 1', and v’ defined by Eqs. (6.86), (6.87q),
and (6.875h), tespectively.

We are now in a position to obtain a formula for the pressure correction p’ by
msisting that the velocity field must satisfy the continuity equation. However, we are
reminded that the pressure correction method is an iterative approach, and therefore
there is no inherent reason why the formula designed to predict p” from one iteration
to the next be physically correct; rather, we are concerned with only two aspects: (1)
the formula for p’ must yield the values that ultimately lead to the proper, converged
solution, and (2) in the limit of the converged solution, the formula for p’ must
reduce to the physically correct continuity equation. That is, we are allowed to
construct a formula for p” which is simply a numerical artifice designed to expedite
the convergence of the velocity field to a solution that satisfies the continuity
cquation. When this convergence is achieved, p° — 0, and the formula for p’
reduces to the physically correct continuity equation,

With the above aspects in mind, let us proceed to obtain the pressure
correction formula. Following Patankar (Ref 68), let us arbitrarily set 4', B,




n+1 g n+1 (pv*)nﬁ-l

!
(pv )i,j-{— 1/2 = (Pv)r‘,j+ 1/2 ij+1/2

we can write Eq. (6.99) as

(pv)n-!- 1 _ (pv*)n +1 Ar !

! n
Lj+1/2 = ij172 _A_y (s _Pi,j) (6.101)

Returning to the continuity equation

I pu) N d{pv)

=0
Ox dy

and writing the corresponding central difference equations centered around point
(Z, /), we have

(P”);‘H/z,,‘ — (pu); 27 (pv)i,jf 127 (pv)i,j 1/2

e & =0 (6.102)

Substituting Eqs. (6.100) and (6.101) into (6.102) and dropping the superscripts,



d= Ax [(P“ﬁ)u]/z,j - (pu*)i—lﬁ,jj + A_y l(PV*)i,jJrl/z - (PV*J:',;—I/QJ

Equation (6.104) is the pressure correction formula. It has an elliptic behavior,
consistent with the fact that a pressure disturbance will propagate everywhere
throughout an incompressible flow. Thus, Eq. (6.104) can be solved for p’ by means
of a numerical relaxation technique, such as described in Sec. 6.5.

Note that d in Eq. (6.104) is the central difference formulation of the left-hand
side of the continuity equation expressed in terms of «* and v*. During the course
of the iterative process, u* and v* define a velocity field that does not satisfy
the continuity equation; hence in Eq. (6.104), d # 0 for all but the last iteration.
In this sensc, d is a mass source term, By definition, in the last iteration, the
velocity field has converged to a field that satisfies the continuity equation, and
hence, theoretically, d = 0 for this last iteration. In this sense, although a
mathematical artifice was used to obtain Eq. (6.104), in the last iterative step
we can construe Eq. (6.104) as being a proper physical statement of the con-
servation of mass.

It is interesting to note that the pressure correction formula, Eq. (6.104), is a
central difference formulation of the Poisson equation in terms of the pressure
correction p'.

82 ! (92 /
Al )
oxr oy
If the second partial derivatives in Eq. (6.105) are replaced by central differences
and if O = d/(Ar Ax), then Eq. (6.104) is obtained. (This short derivation is left as

(6.105)




Instead, because ot the above artihice, Eq. (6.104) contains pressure corrections at
only four grid points, and hence it is termed as only semi-implicit by Patankar (Ref.
68).

The step-by-step procedure for the SIMPLE algorithm 1s as follows:

1. Keeping in mind the staggered grid as sketched in Fig. 6.15, guess values of
(p*)" at all the “pressure” grid points (the filled points in Fig. 6.15). Also,
arbitrarily set values of (pu*)" and (pv*)" at the proper “velocity” grid points
(the open points in Fig. 6.15). Here, we are considering the grid points internal to
the flow field; the treatment of points on the boundaries will be discussed later.

(6.94) and (pv*)""' from Eq. (6.95) at all

(1
Ol Pg. (.70 di

[N

Solve for (pu*)"™! from Eq
ULV ’ \}./ / : ."1’
appropriate internal grid points,
3. Substitute these values of (p*)*'! and (pv¥)*'! into Eq. (6,104), and solve for
p" at all interior grid points. (This solution can be carried out by a relaxation

procedure such as described mn Sec. 6.5.)
*1 at all internal grid points from Eq. (6.86), iec.,

Pl =)+ p

5. The values of p"! obtained in step 4 are used to solve the momentum equations
again. For this, we designate p"*' obtained above as the new values of (p*)" to be
inserted into Eqs. (6.94) and (6.95). With this interpretation, return to step 2 and
repeat steps 2 1o 5 until convergence is achieved. A reasonable criterion to use
for a measure of convergence is when the mass source term d approaches zero.

4. Calculate p




relaxation in such cases; Le., instead of using Eq. (6.86) i}fstep 4, use the equation
Pl = (p") oy (6.106)

where o, is an underrelaxation factor; a value of about 0.8 is suggested. It may also
be helpful in some cases to underrelax the values of #* and v* obtained from Egs.
(6.94) and (6.95).

6.8.6 Boundary Conditions for the Pressure
Correction Method

How are boundary conditions specified consistent with the philosophy of the
pressure correction method? This question is addressed here. For geometric
simplicity, consider the constant-area duct sketched in Fig, 6.18; a staggered grid

is distributed inside the duct. For an incompressible viscous tflow, the physical
problem is uniquely specified if:

1. At the inflow boundary, p and v are specified and u is allowed to float. If p is
specified, then p’ is zero at the inflow boundary. Hence, in Fig. 6.18,

Y Y S S
Pi=p3=ps=p;=0
vy, V4, Vg are specified and held fixed.
2. At the outflow boundary, p is specified and » and v are aliowed to float. Hence

Ps =Dl :P’u =pu=0



at the wall is zero.

Wis = M7 = ui9 — U] = U = Uag = Uy = tizg = 0

For the numerical solution, we need one more boundary condition at the wall. Since
Eq. (6.104) has elliptic behavior and is solved by a rclaxation technique, a boundary
condition associated with p' must be specified over the complete boundary
containing the computational domain. From items 1 and 2 above, we have
P’ =0 at the mflow and outflow boundaries. A condition associated with p’ at
the walls can be derived as follows. Evaluate the y-momentum equation at the wall,
where # = v = 0. With these vclocity values inserted into Eq. (6.79), we have at the
wall (neglecting body forces)

op Fv Py ,
op\ _ 107
(6}’)“, “(8x3+3y2)w (6.107)

Since v, = 0, then in Eq. (6.107), (8°v/dx),, = 0. Also, in the near vicinity of the
wall, v is small; hence, in Eq. (6.107) we can reasonably assume that ((’)zv/(’?y)w is
small. Thus, from Eq. (6.107) we can comfortably state the approximate (but
reasonable) pressure boundary condition at the wall to be given by

(g_f) =0 (6.108)

W

Discretizing Eq. (6.108), we have (refering to Fig. 6.18)
PL=m Ple = P29 Ps =P ctc.



